Table of indefinite integrals

1. $\int a d x=a x+C, a$ is a constant, 9. $\int \tan x d x=-\ln |\cos x|+C$,
2. $\int x d x=\frac{x^{2}}{2}+C$,
3. $\int \cot x d x=\ln |\sin x|+C$,
4. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$,
5. $\int \sec ^{2} x d x=\tan x+C$,
6. $\int \frac{1}{x} d x=\ln |x|+C$,
7. $\int \csc ^{2} x d x=-\cot x+C$,
8. $\int \mathrm{e}^{x} d x=\mathrm{e}^{x}+C$,
9. $\int \sec x \tan x d x=\sec x+C$,
10. $\int \mathrm{a}^{x} d x=\frac{\mathrm{a}^{x}}{\ln \mathrm{a}}+C$,
11. $\int \csc x \cot x=-\csc x+C$,
12. $\int \sin x d x=-\cos x+C$,
13. $\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C$,
14. $\int \cos x d x=\sin x+C$,
15. $\int \frac{1}{1+x^{2}} d x=\arctan x+C$.

Definition of a definite integral

If f is a function defined on a closed interval $[a, b]$, let P be a partition of $[a, b]$ with partition points $x_{0}, x_{1}, \ldots, x_{n}$, where

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

Choose points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ and let $\Delta x_{i}=x_{i}-x_{i-1}$ and $\|P\|=\max \left\{\Delta x_{i}\right\}$. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

if this limit exists. If the limit does exist, then f is called integrable on the interval $[a, b]$.
In the notation $\int_{a}^{b} f(x) d x, f(x)$ is called the integrand and a and b are called the limits of integration; a is the lower limit and b is the upper limit.

The procedure of calculating an integral is called integration.

Properties of the definite integral

1. $\int_{a}^{b} c d x=c(b-a)$, where c is a constant.
2. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$, where c is a constant.
3. $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$.
4. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, where $a<c<b$.
5. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$.

Section 6.4 The fundamental theorem of calculus.
Suppose f is continuous on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b}$, where F is an antiderivative of f.

Example 1. Evaluate the integral.

1. $\int_{2}^{6} \frac{1+\sqrt{y}}{y^{2}} d y$
2. $\int_{0}^{2} f(x) d x$, where $f(x)= \begin{cases}x^{4} & 0 \leq x<1 \\ x^{5} & 1 \leq x \leq 2\end{cases}$

Example 2. A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-2 t-8$.

1. Find the displacement of the particle during the time period $1 \leq t \leq 6$.
2. Find the distance traveled during this time period.
