Section 7.3 Volumes by cylindrical shells

Lets find the volume V of a cylindrical shell with inner radius r_{1}, outer radius r_{2}, and height h (see Fig.1).

Fig. 1
V can be calculated by subtracting the volume V_{1} of the inner cylinder from the volume V_{2} of the outer cylinder:

$$
V=V_{2}-V_{1}=\pi h\left(r_{2}^{2}-r_{1}^{2}\right)=2 \pi h \frac{r_{2}+r_{1}}{2}\left(r_{2}-r_{1}\right)
$$

Let $\Delta r=r_{2}-r_{1}, r=\left(r_{2}+r_{1}\right) / 2$, then the volume of a cylindrical shell is

$$
V=2 \pi r h \Delta r
$$

$V=[$ circumference][height][thickness]
$V=2 \pi$ [average radius][height][thickness]
Now let S be the solid obtained by rotating about the y-axis the region bounded by $y=$ $f(x) \geq 0, y=0, x=a$, and $x=b$, where $b>a \geq 0$.

Let P be a partition of $[a, b]$ by points x_{i} such that $a=x_{0}<x_{1}<\ldots<x_{n}=b$ and let x_{i}^{*} be the midpoint of $\left[x_{i-1}, x_{i}\right]$, that is $x_{i}^{*}=\left(x_{i-1}+x_{i}\right) / 2$. If the rectangle with base $\left[x_{i-1}, x_{i}\right]$
and height $f\left(x_{i}^{*}\right)$ is rotated about the y-axis, then the result is a cylindrical shell with average raduis x_{i}^{*}, height $f\left(x_{i}^{*}\right)$, and thikness $\Delta x_{i}=x_{i}-x_{i-1}$, so its volume is $V_{i}=2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x_{i}$.

The approximation to the volume V of S is $V \approx \sum_{i=1}^{n} 2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x_{i}$. This approximation appears to become better and better as $\|P\| \rightarrow 0$.

Thus, the volume of S is

$$
V_{Y}=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} 2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x_{i}=2 \pi \int_{a}^{b} x f(x) d x
$$

Example 1. Find the volume of the solid obtained by rotating the region bounded by $y=2 x-x^{2}, y=0,0 \leq x \leq 1$ about the y-axis.

The volume of the solid generated by rotating about the y-axis the region between the curves $y=f(x)$ and $y=g(x)$ from a to $b[f(x) \geq g(x)$ and $0 \leq a<b]$ is

$$
V_{Y}=2 \pi \int_{a}^{b} x[f(x)-g(x)] d x
$$

Example 2. Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}, y=4, x=0$ about the y-axis, $x>0$.

The method of cylindrical shells also allows us to compute volumes of revolution about the x-axis. If we interchange the roles of x and y in the formula for the volume, then the volume of the solid generated by rotating the region bounded by $x=g(y), x=0, y=c$, and $y=d$ about the x-axis, is

$$
V_{X}=2 \pi \int_{c}^{d} y g(y) d y
$$

Example 3. Find the volume of the solid obtained by rotating the region bounded by $y^{2}-6 y+x=0, x=0$ about the x-axis.

The volume of the solid generated by rotating the region bounded by $x=g_{1}(y), x=g_{2}(y)$, $y=c$, and $y=d$, about the x-axis, assuming that $g_{2}(y) \geq g_{1}(y)$ for all $c \leq x \leq d$, is

$$
V_{X}=2 \pi \int_{c}^{d} y\left[g_{2}(y)-g_{1}(y)\right] d y
$$

Example 4. Find the volume of the solid obtained by rotating the region bounded by $y=4 x-x^{2}, y=8 x-2 x^{2}$ about $x=-2$.

