Chapter 7. Applications of integration Section 7.4 Work

Mechanical work is the amount of energy transferred by a force.
If an object moves along a straight line with position function $s(t)$, then the force F on the object (in the same direction) is defined by Newton's Second Law of Motion

$$
F=m a=m \frac{d^{2} s}{d t^{2}}
$$

In case of constant acceleration, the force F is also constant and the work done is defined to be the product of the force F and the distance d that the object moves

$$
W=F d, \text { work }=\text { force } \times \text { distance }
$$

	Mechanical units in the U.S. customary and SI metric systems	
Unit	U.S. customary system	SI metric system
distance	$f t$	m
mass	$s l u g$	kg
force	$l b$	$\mathrm{~N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{sec}^{2}$
work	$f t-l b$	$\mathrm{~J}=\mathrm{N} \cdot \mathrm{m}$
g(Earth)	$32 \mathrm{ft} / \mathrm{sec}^{2}$	$9.81 \mathrm{~m} / \mathrm{sec}^{2}$

Example 1.

1. Find the work done in pushing a car a distance of 8 m while exerting a constant force of 900 N.
2. How much work is done by a weightlifter in raising a $60-\mathrm{kg}$ barbell from the floor to the height of 2 m ?

What happens if the force is variable?
Problem. The object moves along the x-axis in the positive direction from $x=a$ to $x=b$ and at each point x between a and b a force $f(x)$ acts on the object, where f is continuous function. Find the work done in moving the object from a to b.

Let P be a partition of $[a, b]$ by points x_{i} such that $a=x_{0}<x_{1}<\ldots<x_{n}=b$ and let $\Delta x_{i}=x_{i}-x_{i-1}$, and let x_{i}^{*} is in $\left[x_{i-1}, x_{i}\right]$. Then the force at x_{i}^{*} is $f\left(x_{i}^{*}\right)$. If $\|P\|$ is small, then Δx_{i} is small, and since f is continuous, the values of f do not change very much on $\left[x_{i-1}, x_{i}\right]$. In other words f is almost a constant on the interval and so work W_{i} that is done in moving the particle from x_{i-1} to x_{i} is $W_{i} \approx f\left(x_{i}^{*}\right) \Delta x_{i}$. We can approximate the total work by

$$
W \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

This approximation becomes better and better as $\|P\| \rightarrow 0$.
Therefore, we define the work done in moving the object from a to b as

$$
W=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x
$$

Example 2. When a particle is at a distance x meters from the origin, a force of $\cos (\pi x / 3)$ N acts on it. How much work is done by moving the particle from $x=1$ to $x=2$.

Hooke's Law: The force required to maintain a spring stretched x units beyond its natural length is proportional to x

$$
f(x)=k x
$$

where k is a positive constant (the spring constant).
Example 3. Suppose that 2 J of work are needed to stretch a spring from its natural length of 30 cm to a length of 42 cm . How much work is needed to stretch it from 35 cm to 40 cm ?

Example 4. A uniform cable hanging over the edge of a tall building is 40 ft long and weighs 60 lb . How much work is required to pull 10 ft of the cable to the top?

Example 5. A circular swimming pool has a diameter of 24 ft , the sides are 5 ft high, and the depth of the water is 4 ft . How much work is required to pump all the water out over the side?

