Chapter 8. Techniques of integration Section 8.9 Improper integrals

In this section we extend the conception of a definite integral to the case where the interval is infinite and also to the case where integrand is unbounded.

1. Definition of an improper integral of type 1 (infinite intervals)

(a) If $\int_{a}^{t} f(x) dx$ exists for every number $t \ge a$, then

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$

provided this limit exists (as a finite number)

(b) If $\int_{t}^{b} f(x) dx$ exists for every number $t \leq b$, then

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

provided this limit exists (as a finite number)

The improper integrals in (a) and (b) are called **convergent** if the limit exist and **divergent** if the limit does not exist.

(c) If both
$$\int_{a}^{\infty} f(x)dx$$
 and $\int_{-\infty}^{b} f(x)dx$ are convergent, then we define
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$$

where a is any real number

Example 1. For what values of p is the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ convergent?

Example 2. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

(a)
$$\int_{2}^{\infty} \frac{dx}{\sqrt{x+3}}$$

(b)
$$\int_{-\infty}^{3} \frac{dx}{x^2 + 9}$$

(c)
$$\int_{-\infty}^{\infty} (2x^2 + x - 1)dx$$

(d)
$$\int_{0}^{\infty} \frac{1}{(x+2)(x+3)} dx$$

(e)
$$\int_{1}^{\infty} e^x dx$$

(f)
$$\int_{-\infty}^{1} e^x dx$$

(g)
$$\int_{-\infty}^{\infty} e^x dx$$

(h)
$$\int_{e}^{\infty} \frac{dx}{x(\ln x)^2}$$

2. Definition of an improper integral of type 2 (discontinuous integrands)

(a) If f is continuous on [a, b) and is discontinuous at b, then

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$$

if this limit exists (as a finite number)

(b) If f is continuous on (a, b] and is discontinuous at a, then

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx$$

if this limit exists (as a finite number)

The improper integrals in (a) and (b) are called **convergent** if the limit exist and **divergent** if the limit does not exist.

(c) If f has discontinuity at c (a < c < b), and both $\int_{a}^{c} f(x)dx$ and $\int_{c}^{b} f(x)dx$ are convergent, then

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Example 3. For what values of p is the integral $\int_{0}^{1} \frac{1}{x^{p}} dx$ convergent?

Example 4. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

$$1. \int_{-3}^{0} \frac{dx}{\sqrt{x+3}}$$

$$2. \int_{0}^{3} \frac{1}{x\sqrt{x}} dx$$

3.
$$\int_{\pi/4}^{\pi/2} \sec^2 x dx$$

4.
$$\int_{0}^{1} \ln x dx$$

Comparison theorem. Suppose that f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for $x \ge a$.

(a) If
$$\int_{a}^{\infty} f(x)dx$$
 is convergent, then $\int_{a}^{\infty} g(x)dx$ is convergent.
(b) If $\int_{a}^{\infty} g(x)dx$ is divergent, then $\int_{a}^{\infty} f(x)dx$ is divergent.

Example 5. Use the Comparison Theorem to determine whether $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ is convergent

or divergent.