10.7: Taylor and Maclaurin Series

• The Taylor series for
$$f(x)$$
 about $x = a$:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n =$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \dots$$

• The Maclaurin series is the Taylor series about x = 0 (i.e. a=0):

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \dots$$

• Known Mclaurin series and their intervals of convergence you must have memorized:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$
(1,1)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \quad (-\infty, \infty)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \quad (-\infty, \infty)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \quad (-\infty, \infty)$$

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \quad [-1,1]$$

Examples.

1. Given that function f has power series expansion (i.e. Taylor series) centered at $a = \pi$. Find this expansion and its radius of convergence if it is given that

$$f^{(n)}(\pi) = \frac{(-1)^n n!}{4^{2n+1}(2n+1)!}.$$

- 2. Find the 20th derivative of $f(x) = e^{x^2}$ at x = 0.
- 3. Find Taylor series for $f(x) = e^{3x}$ centered at x = 1/3. What is the associated radius of convergence?
- 4. Find Taylor series for $f(x) = \frac{1}{x}$ centered at x = 5. What is the associated interval of convergence?
- 5. Find Maclaurin series for the following functions:
 - (a) $f(x) = x^3 \sin x^5$

- (b) $f(x) = \sin^2 x$ (c) $x + 3x^2 + xe^{-x}$
- 6. Express $\int \frac{\sin(3x)}{x} dx$ as an infinite series.
- 7. Find the sum of the series:

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{4^{2n} (2n)!}$$

(b) $\sum_{n=0}^{\infty} \frac{7^n}{n!}$
(c) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{6n+3}}{2n+1}$

8. Use series to approximate the integral $\int_0^{0.5} x^2 e^{-x^2} dx$ with error less than 10^{-3} . **10.9: Applications of Taylor Polynomials**

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = \sum_{\substack{n=0\\N=0}}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n + \sum_{\substack{n=N+1\\N=1}}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n + \sum_{\substack{n=N+1\\N=1\\R_N(x)\\Remainder\\Taylor polynomial}} \frac{f^{(n)}(a)}{R_N(x)} (x-a)^n + \sum_{\substack{n=N+1\\R_N(x)\\Remainder\\Remainder}} \frac{f^{(n)}(a)}{n!} (x-a)^n + \sum_{\substack{n=N+1\\R_N(x)\\Remainder}} \frac{f^{(n)}(a)}{n!} (x-a)^n + \sum_{\substack{n=N+1\\R_N(x)\\R_$$

Examples.

- 9. Find the fourth-degree Taylor polynomial of $f(x) = \frac{1}{2+6x}$ centered at a = 0.
- 10. Find the third-degree Taylor polynomial of $f(x) = \sqrt[3]{x}$ centered at a = 1.
- 11. Find the second degree Taylor Polynomial for $f(x) = \ln x$ at a = 3.

11.1: Three-dimensional Coordinate System

• The distance between the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is

$$|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• Equation of a sphere $(x - a)^2 + (y - b)^2 + (z - c)^2 = r^2$ (completing the square)

Examples.

- 12. Graph the following regions: (a) x = 5 in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$; (b) $x^2 + y^2 - 1 = 0$ in $\mathbb{R}^2, \mathbb{R}^3$.
- 13. Given the sphere $(x-1)^2 + (y+4)^2 + (z-2)^2 = 16$.
 - (a) What is the intersection of the sphere with the yz-plane.
 - (b) Find the distance from the point (1, -2, 3) to the center of the sphere.
- 14. What is the intersection of the surface $x^2 + y^2 = 49$ with the *xy*-plane.
- 15. Determine the radius and the center of the sphere given by the equation

$$x^2 + y^2 + z^2 + 2y + z - 1 = 0.$$