10.7: Taylor and Maclaurin Series

- The Taylor series for $f(x)$ about $x=a$:

$$
\begin{aligned}
f(x)= & \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}= \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
\end{aligned}
$$

- The Maclaurin series is the Taylor series about $x=0$ (i.e. $\mathbf{a}=\mathbf{0}$):

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots
$$

- Known Mclaurin series and their intervals of convergence you must have memorized:

$$
\begin{aligned}
& \frac{1}{1-x}=\quad \sum_{n=0}^{\infty} x^{n} \quad=\quad 1+x+x^{2}+x^{3}+\ldots \\
& e^{x} \quad=\quad \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad=\quad 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \quad(-\infty, \infty) \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \quad(-\infty, \infty) \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \quad(-\infty, \infty) \\
& \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \quad[-1,1]
\end{aligned}
$$

Examples.

1. Given that function f has power series expansion (i.e. Taylor series) centered at $a=\pi$. Find this expansion and its radius of convergence if it is given that

$$
f^{(n)}(\pi)=\frac{(-1)^{n} n!}{4^{2 n+1}(2 n+1)!}
$$

2. Find the 20th derivative of $f(x)=e^{x^{2}}$ at $x=0$.
3. Find Taylor series for $f(x)=e^{3 x}$ centered at $x=1 / 3$. What is the associated radius of convergence?
4. Find Taylor series for $f(x)=\frac{1}{x}$ centered at $x=5$. What is the associated interval of convergence?
5. Find Maclaurin series for the following functions:
(a) $f(x)=x^{3} \sin x^{5}$
(b) $f(x)=\sin ^{2} x$
(c) $x+3 x^{2}+x e^{-x}$
6. Express $\int \frac{\sin (3 x)}{x} \mathrm{~d} x$ as an infinite series.
7. Find the sum of the series:
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{4^{2 n}(2 n)!}$
(b) $\sum_{n=0}^{\infty} \frac{7^{n}}{n!}$
(c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+3}}{2 n+1}$
8. Use series to approximate the integral $\int_{0}^{0.5} x^{2} e^{-x^{2}} \mathrm{~d} x$ with error less than 10^{-3}.

10.9: Applications of Taylor Polynomials

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=\underbrace{\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}}_{\begin{array}{c}
T_{N}(x) \\
N-\text { th degree }
\end{array}}+\underbrace{\sum_{n=N+1}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}}_{\begin{array}{c}
R_{N}(x) \\
\text { Remainder }
\end{array}}
$$

Examples.

9. Find the fourth-degree Taylor polynomial of $f(x)=\frac{1}{2+6 x}$ centered at $a=0$.
10. Find the third-degree Taylor polynomial of $f(x)=\sqrt[3]{x}$ centered at $a=1$.
11. Find the second degree Taylor Polynomial for $f(x)=\ln x$ at $a=3$.

11.1: Three-dimensional Coordinate System

- The distance between the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} .
$$

- Equation of a sphere $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$ (completing the square)

Examples.

12. Graph the following regions:
(a) $x=5$ in $\mathbb{R}, \mathbb{R}^{2}, \mathbb{R}^{3}$; (b) $x^{2}+y^{2}-1=0$ in $\mathbb{R}^{2}, \mathbb{R}^{3}$.
13. Given the sphere $(x-1)^{2}+(y+4)^{2}+(z-2)^{2}=16$.
(a) What is the intersection of the sphere with the $y z$-plane.
(b) Find the distance from the point $(1,-2,3)$ to the center of the sphere.
14. What is the intersection of the surface $x^{2}+y^{2}=49$ with the $x y$-plane.
15. Determine the radius and the center of the sphere given by the equation

$$
x^{2}+y^{2}+z^{2}+2 y+z-1=0 .
$$

