1. Find the area of the region between $y=x^{2}$ and $y=x+2$ from $x=0$ to $x=1$.
2. Find the area of the region bounded by the line $y=x$ and the parabola $y=6-x^{2}$.
3. Find the area of the region bounded by $y=x^{3}$ and $y=x$.
4. Find the area of the region between $x=y^{2}$ and $x=32-y^{2}$ from $y=-2$ to $y=2$.
5. Find the area of the region between lines $x=-2 y+5, x=y-1$ and $y=0$.
6. Find the area of the region between $x=-y^{2}$ and $x=y-2$.
7. The base of a certain solid is a circle with diameter $A B$ of length $2 a$. Find the volume of the solid if each cross section perpendicular to $A B$ is a square.
8. The base of a certain solid is the region in the $x y$-plane bounded by the parabolas $y=x^{2}$ and $x=y^{2}$. Find the volume of this solid if every cross section perpendicular to the x-axis is a square with base in the $x y$-plane.
9. Find the volume of a frustum of a pyramid with square base of side b, square top of side a and height h.
10. Find the volume of the solid which is generated by rotating the region bounded by $y=$ $\sin x$ on $[0, \pi]$ and $y=0$ about the x-axis.
11. Verify the formula $V=\frac{1}{3} \pi r^{2} h$ for the volume of the circular cone with base radius r and height h.
12. Find the volume of the solid generated by rotating the region bounded by $y=1-x^{2}$, lines $x=-1$ and $x=1$ about the line $y=2$.
13. Determine the volume of the solid obtained by rotating the region bounded by $x=5-x^{2}$ and $x=1$ about the y-axis.
