1. Find the area of the region bounded by $y=e^{x}, y=e^{-x}, x=-2$, and $x=1$.
2. Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}-1, y=0, x=1, x=2$ about the x-axis.
3. Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}, y=0 . x=1, x=2$ about
(a) the y-axis
(b) $x=4$
4. The base of solid S is the triangular region with vertices $(0,0),(2,0)$, and $(0,1)$. Cross-sections perpendicular to the x-axis are semicircles. Find the volume of S.
5. A heavy rope, 50 ft long, weighs $0.5 \mathrm{lb} / \mathrm{ft}$ and hangs over the edge of a building 120 ft hight. How much work is done in pulling the half rope to the top of the building?
6. A spring has a natural length of 20 cm . If a $25-\mathrm{N}$ force is required to keep it stretched to a length of 30 cm , how much work is required to stretch it from 20 cm to 25 cm ?
7. A tank in a shape of a sphere of radius 9 m is half full of water. Find the work W required to pump the water out of the spout, if the height of the spout is 3 m .
8. Find the average value of $f(x)=\sin ^{2} x \cos x$ on $[-\pi / 2, \pi / 4]$.
9. Evaluate the integral
(a) $\int t^{2} \cos \left(1-t^{3}\right) d t$
(b) $\int \frac{x^{2}}{\sqrt{1-x}} d x$
(c) $\int x^{3} \sqrt{x^{2}+5} d x$
(d) $\int \frac{\sin ^{3} x}{\sec ^{4} x} d x$
(e) $\int x^{3} e^{x^{2}} d x$
(f) $\int_{0}^{\pi / 8} \sin ^{2}(2 x) \cos ^{3}(2 x) d x$
(g) $\int \sin ^{2} x \cos ^{4} x d x$
(h) $\int_{0}^{\pi / 4} \tan ^{4} x \sec ^{2} x d x$
(i) $\int \tan x \sec ^{3} x d x$
(j) $\int \sin 3 x \cos x d x$
