WEEK in REVIEW 6

Sections 9.3, 9.4, 10.1

- 1. Find the length of the curve $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \pi/2$.
- 2. Find the length of the curve $x = \frac{1}{4} \ln y \frac{1}{2}y^2$ from y = 1 to y = e.
- 3. A wire hanging between two poles (at x = -10 and x = 10) takes the shape of a catenary with equation

$$y = 2(e^{x/4} + e^{-x/4})$$

Find the length of the wire.

- 4. The curve $y = x^2$, $0 \le x \le 1$, is rotated about the y-axis. Find the area of the resulting surface.
- 5. The curve $x = 1 \cos(2t)$, $y = 2t + \sin(2t)$, $0 \le t \le \pi/4$ is rotated about the x-axis. Find the area of the resulting surface.
- 6. Set up (but don't evaluate) the integral that gives the surface area obtaine by rotating the curve

$$x = \sin(\pi y^2/8), \quad 1 \le y \le 2,$$

- (a) about the x-axis
- (b) about the y-axis
- 7. The curve $x = \sin(at), y = \cos(at), 0 \le t \le \frac{\pi}{2a}$ is rotated about the x-axis (here a is an arbitrary positive constant). Find the area of the resulting surface.
- 8. Define the *n*-th term of the sequence $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\right\}$ and find its limit.
- 9. Determine if the given sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{3n^5 - 12n^3 + 2012}{2012 - 12n^4 - 4n^4 - 9n^5}$$

(b) $b_n = \frac{3n^5 - 12n^3 + 2012}{2012 - 12n^4 - 4n^4 - 9n^5 + 11n^6}$
(c) $c_n = \frac{12n^7 + 2012}{2012 - 12n^4 - 4n^5 - 9n^6}$

10. Determine if the sequence with the given general term $(n \ge 1)$ converges or diverges. If it converges, find the limit.

(a)
$$a_n = \ln(n^2 + 3) - \ln(7n^2 - 5)$$

(b) $z_n = \frac{1}{n^4} \sin\left(\frac{1}{n^5}\right)$
(c) $y_n = \frac{(-1)^n}{n^3}$
(d) $x_n = \frac{(-1)^n n}{3n + 33}$

- 11. Assuming that the sequence defined recursively by $a_n = 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{9}{a_n} \right)$ is convergent, find its limit.
- 12. Determine whether the given sequence is increasing or decreasing.
 - (a) $\{\arctan(n)\}_{n=1}^{\infty}$ (b) $\{n-2^n\}_{n=1}^{\infty}$