WEEK in REVIEW 6

Sections 9.3, 9.4, 10.1

- If a curve C is defined by the equations $x = x(t), y = y(t), a \le t \le b$, then $L = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$
- If a curve C is given by the equation y = y(x), $a \le x \le b$, then $L = \int_a^b \sqrt{1 + [y'(x)]^2} dx$
- If a curve C is given by the equation x = x(y), $c \le y \le d$, then $L = \int_{C}^{d} \sqrt{1 + [x'(y)]^2} dy$
- 1. Find the length of the curve $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \pi/2$.

2. Find the length of the curve $x = \frac{1}{4} \ln y - \frac{1}{2} y^2$ from y = 1 to y = e.

3. A wire hanging between two poles (at x=-10 and x=10) takes the shape of a catenary with equation $y=2(e^{x/4}+e^{-x/4}).$

Find the length of the wire.

For rotation about the x-axis, the surface area formulas are:

- if a curve is given as y = y(x), $a \le x \le b$, then $S.A. = 2\pi \int_a^b y(x) \sqrt{1 + [y'(x)]^2} dx$
- if a curve is described as x = x(y), $c \le y \le d$, then $S.A. = 2\pi \int_c^d y \sqrt{1 + [x'(y)]^2} dy$
- if a curve is defined by $x = x(t), y = y(t), a \le t \le b$, then $S.A. = \int_a^b y(t) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$

For rotation about the y-axis, the surface area formulas are:

- if a curve is given as $y = y(x), a \le x \le b$, then $S.A. = 2\pi \int_a^b x \sqrt{1 + [y'(x)]^2} dx$
- if a curve is described as x = x(y), $c \le y \le d$, then $S.A. = 2\pi \int_c^d x(y0\sqrt{1+[x'(y)]^2}dy$
- if a curve is defined by $x = x(t), y = y(t), a \le t \le b$, then $S.A. = \int_a^b x(t) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$
- 4. The curve $y = x^2$, $0 \le x \le 1$, is rotated about the y-axis. Find the area of the resulting surface.

5. The curve $x = 1 - \cos(2t)$, $y = 2t + \sin(2t)$, $0 \le t \le \pi/4$ is rotated about the x-axis. Find the area of the resulting surface.

6. Set up (but don't evaluate) the integral that gives the surface area obtaine by rotating the curve

$$x = \sin(\pi y^2/8), \quad 1 \le y \le 2,$$

(a) about the x-axis

(b) about the y-axis

7. The curve $x = \sin(at), y = \cos(at), 0 \le t \le \frac{\pi}{2a}$ is rotated about the x-axis (here a is an arbitrary positive constant). Find the area of the resulting surface.

8. Define the *n*-th term of the sequence $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\right\}$ and find its limit.

9. Determine if the given sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{3n^5 - 12n^3 + 2012}{2012 - 12n^4 - 4n^4 - 9n^5}$$

(b)
$$b_n = \frac{3n^5 - 12n^3 + 2012}{2012 - 12n^4 - 4n^4 - 9n^5 + 11n^6}$$

(c)
$$c_n = \frac{12n^7 + 2012}{2012 - 12n^4 - 4n^5 - 9n^6}$$

10. Determine if the sequence with the given general term $(n \ge 1)$ converges or diverges. If it converges, find the limit.

(a)
$$a_n = \ln(n^2 + 3) - \ln(7n^2 - 5)$$

(b)
$$z_n = \frac{1}{n^4} \sin\left(\frac{1}{n^5}\right)$$

(c)
$$y_n = \frac{(-1)^n}{n^3}$$

(d)
$$x_n = \frac{(-1)^n n}{3n+33}$$

11. Assuming that the sequence defined recursively by $a_n = 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{9}{a_n} \right)$ is convergent, find its limit.

- 12. Determine whether the given sequence is increasing or decreasing.
 - (a) $\{\arctan(n)\}_{n=1}^{\infty}$

(b) $\{n-2^n\}_{n=1}^{\infty}$