- If a curve C is defined by the equations $x=x(t), y=y(t), \quad a \leq t \leq b$, then $L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$
- If a curve C is given by the equation $y=y(x), \quad a \leq x \leq b$, then $L=\int_{a}^{b} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- If a curve C is given by the equation $x=x(y), \quad c \leq y \leq d$, then $L=\int_{c}^{d} \sqrt{1+\left[x^{\prime}(y)\right]^{2}} d y$

1. Find the length of the curve $x=\cos ^{3} t, y=\sin ^{3} t, 0 \leq t \leq \pi / 2$.
2. Find the length of the curve $x=\frac{1}{4} \ln y-\frac{1}{2} y^{2}$ from $y=1$ to $y=e$.
3. A wire hanging between two poles (at $x=-10$ and $x=10$) takes the shape of a catenary with equation

$$
y=2\left(e^{x / 4}+e^{-x / 4}\right)
$$

Find the length of the wire.

For rotation about the x-axis, the surface area formulas are:

- if a curve is given as $y=y(x), a \leq x \leq b$, then $S . A .=2 \pi \int_{a}^{b} y(x) \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- if a curve is described as $x=x(y), c \leq y \leq d$, then $S . A .=2 \pi \int_{c}^{d} y \sqrt{1+\left[x^{\prime}(y)\right]^{2}} d y$
- if a curve is defined by $x=x(t), y=y(t), a \leq t \leq b$, then $S . A .=\int_{a}^{b} y(t) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$

For rotation about the y-axis, the surface area formulas are:

- if a curve is given as $y=y(x), a \leq x \leq b$, then S.A. $=2 \pi \int_{a}^{b} x \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- if a curve is described as $x=x(y), c \leq y \leq d$, then $S . A .=2 \pi \int_{c}^{d} x\left(y 0 \sqrt{1+\left[x^{\prime}(y)\right]^{2}} d y\right.$
- if a curve is defined by $x=x(t), y=y(t), a \leq t \leq b$, then $S . A .=\int_{a}^{b} x(t) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$

4. The curve $y=x^{2}, 0 \leq x \leq 1$, is rotated about the y-axis. Find the area of the resulting surface.
5. The curve $x=1-\cos (2 t), y=2 t+\sin (2 t), 0 \leq t \leq \pi / 4$ is rotated about the x-axis. Find the area of the resulting surface.
6. Set up (but don't evaluate) the integral that gives the surface area obtaine by rotating the curve

$$
x=\sin \left(\pi y^{2} / 8\right), \quad 1 \leq y \leq 2
$$

(a) about the x-axis
(b) about the y-axis
7. The curve $x=\sin (a t), y=\cos (a t), 0 \leq t \leq \frac{\pi}{2 a}$ is rotated about the x-axis (here a is an arbitrary positive constant). Find the area of the resulting surface.
8. Define the n-th term of the sequence $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\right\}$ and find its limit.
9. Determine if the given sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=\frac{3 n^{5}-12 n^{3}+2012}{2012-12 n^{4}-4 n^{4}-9 n^{5}}$
(b) $b_{n}=\frac{3 n^{5}-12 n^{3}+2012}{2012-12 n^{4}-4 n^{4}-9 n^{5}+11 n^{6}}$
(c) $c_{n}=\frac{12 n^{7}+2012}{2012-12 n^{4}-4 n^{5}-9 n^{6}}$
10. Determine if the sequence with the given general term $(n \geq 1)$ converges or diverges. If it converges, find the limit.
(a) $a_{n}=\ln \left(n^{2}+3\right)-\ln \left(7 n^{2}-5\right)$
(b) $z_{n}=\frac{1}{n^{4}} \sin \left(\frac{1}{n^{5}}\right)$
(c) $y_{n}=\frac{(-1)^{n}}{n^{3}}$
(d) $x_{n}=\frac{(-1)^{n} n}{3 n+33}$
11. Assuming that the sequence defined recursively by $a_{n}=1, a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{9}{a_{n}}\right)$ is convergent, find its limit.
12. Determine whether the given sequence is increasing or decreasing.
(a) $\{\arctan (n)\}_{n=1}^{\infty}$
(b) $\left\{n-2^{n}\right\}_{n=1}^{\infty}$

