Math 152/172

WEEK in REVIEW 7

Section 10.2, Review for Test 2.

- 1. Given a series whose partial sums are given by $s_n = (7n + 3)/(n + 7)$, find the general term a_n of the series and determine if the series converges or diverges. If it converges, find the sum.
- 2. Find the sum of the following series or show they are divergent:

(a)
$$\sum_{n=1}^{\infty} \frac{7+5^n}{10^n}$$

(b) $\sum_{n=1}^{\infty} \frac{8}{(n+1)(n+3)}$

- 3. Write the repeating decimal $0.\overline{27}$ as a fraction.
- 4. Use the test for Divergence to determine whether the series diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{n^5}{3(n^4+3)(n+1)}$$

(b) $\sum_{n=1}^{\infty} \arctan n$
(c) $\sum_{n=1}^{\infty} \frac{1}{6-e^{-n}}$

Exam 2 Review

1. Evaluate the integral $I = \int (4x^2 - 25)^{-3/2} dx$

2. Determine whether the given integral is convergent or divergent.

(a)
$$\int_{1}^{\infty} \frac{4 + \cos^4 x}{x} dx$$

(b)
$$\int_{0}^{\infty} \frac{1}{\sqrt{x} + e^x} dx$$

(c)
$$\int_{0}^{2016} \frac{1}{\sqrt{2016 - x}} dx$$

- 3. The curve $y = \sin x$ for $0 \le x \le \pi$ is rotated about the x-axis. Set up, but don't evaluate the integral for the area of the resulting surface.
- 4. Determine if the sequence $\{a_n\}_{n=2}^{\infty}$ is decreasing and bounded:

(a)
$$a_n = \ln n$$

(b) $a_n = \cos(n^2)$

(c)
$$a_n = e^{-n}$$

(d) $a_n = e^n + 11$
(e) $a_n = 1 - \frac{1}{n^2}$

- 5. The curve $y = \frac{1}{2}(e^x + e^{-x}), 0 \le x \le 1$, is rotated about the *x*-axis. Find the area of the resulting surface.
- 6. Set up, but don't evaluate the integral for the length of the curve $x = 2t^2$, $y = t^3$, $0 \le t \le 1$.
- 7. Find length of the curve $y = \frac{1}{\pi} \ln(\sec(\pi x))$ from the point (0,0) to the point $(\frac{1}{6}, \ln \frac{2}{\sqrt{3}})$.
- 8. Use a trigonometric substitution to eliminate the root: $\sqrt{24 12x + 2x^2}$.
- 9. Determine if the sequence converges or diverges. If converges, find its limit.

(a)
$$\left\{\frac{2016 + (-1)^n}{n^{2016}}\right\}_{n=1}^{\infty}$$

(b) $\left\{\sqrt{\frac{7n + 6n^3 + n^2}{(n+3)(n^2+8)}}\right\}_{n=4}^{\infty}$.
(c) $\left\{\frac{1}{2}\ln(n^2 + 2n - 4) - \ln(n+6)\right\}_{n=10}^{\infty}$

10. Evaluate the integral
$$\int \frac{(x-1)^2}{5\sqrt{25-(x-1)^2}} dx.$$

- 11. Compute $S = \sum_{n=1}^{\infty} (e^{1/n} e^{1/(n+1)}).$
- 12. Write out the form of the partial fraction decomposition (do not try to solve)

$$\frac{20x^3 + 12x^2 + x}{(x^3 - x)(x^3 + 2x^2 - 3x)(x^2 + x + 1)(x^2 + 9)^2}$$

- 13. Evaluate the integral $\int \frac{5x^2 + x + 12}{x^3 + 4x} dx$
- 14. Assuming that the sequence defined recursively by $a_1 = 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{16}{a_n} \right)$ is convergent, find its limit.
- 15. For what values of x the series $\sum_{n=0}^{\infty} (4x-3)^{n+3}$ converges? What is the sum of the series?