WEEK in REVIEW 7
Spring 2016
Section 10.2, Review for Test 2.

Section 10.2

- Infinite series $\sum_{n=1}^{\infty} a_{n} \quad(n=1$ for convenience, it can be anything).
- Partial sums: $S_{N}=\sum_{n=1}^{N} a_{n}$. Note $S_{N}=S_{N-1}+a_{N}$.
- If $\left\{S_{N}\right\}_{N=1}^{\infty}$ is convergent and $\lim _{N \rightarrow \infty} S_{N}=S$ exists as a real number, then the series $\sum_{n=1}^{n} a_{n}$ is convergent. The number s is called the sum of the series.
- Series we can sum:
- Geometric Series $\sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}, \quad-1<r<1$
- Telescoping Series
- THE TEST FOR DIVERGENCE: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- The Test for Divergence cannot be used to prove that a series converges. It can only show a series is divergent.

1. Given a series whose partial sums are given by $s_{n}=(7 n+3) /(n+7)$, find the general term a_{n} of the series and determine if the series converges or diverges. If it converges, find the sum.
2. Find the sum of the following series or show they are divergent:
(a) $\sum_{n=1}^{\infty} \frac{7+5^{n}}{10^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{8}{(n+1)(n+3)}$
3. Write the repeating decimal $0 . \overline{27}$ as a fraction.
4. Use the test for Divergence to determine whether the series diverges.
(a) $\sum_{n=1}^{\infty} \frac{n^{5}}{3\left(n^{4}+3\right)(n+1)}$
(b) $\sum_{n=1}^{\infty} \arctan n$
(c) $\sum_{n=1}^{\infty} \frac{1}{6-e^{-n}}$

Exam 2 Review

1. Evaluate the integral $I=\int\left(4 x^{2}-25\right)^{-3 / 2} d x$
2. Determine whether the given integral is convergent or divergent.
(a) $\int_{1}^{\infty} \frac{4+\cos ^{4} x}{x} d x$
(b) $\int_{0}^{\infty} \frac{1}{\sqrt{x}+e^{x}} d x$
(c) $\int_{0}^{2016} \frac{1}{\sqrt{2016-x}} d x$
3. The curve $y=\sin x$ for $0 \leq x \leq \pi$ is rotated about the x-axis. Set up, but don't evaluate the integral for the area of the resulting surface.
4. Determine if the sequence $\left\{a_{n}\right\}_{n=2}^{\infty}$ is decreasing and bounded:
(a) $a_{n}=\ln n$
(b) $a_{n}=\cos \left(n^{2}\right)$
(c) $a_{n}=e^{-n}$
(d) $a_{n}=e^{n}+11$
(e) $a_{n}=1-\frac{1}{n^{2}}$
5. The curve $y=\frac{1}{2}\left(e^{x}+e^{-x}\right), 0 \leq x \leq 1$, is rotated about the x-axis. Find the area of the resulting surface.
6. Set up, but don't evaluate the integral for the length of the curve $x=2 t^{2}, \quad y=t^{3}, \quad 0 \leq$ $t \leq 1$.
7. Find length of the curve $y=\frac{1}{\pi} \ln (\sec (\pi x))$ from the point $(0,0)$ to the point $\left(\frac{1}{6}, \ln \frac{2}{\sqrt{3}}\right)$.
8. Use a trigonometric substitution to eliminate the root: $\sqrt{24-12 x+2 x^{2}}$.
9. Determine if the sequence converges or diverges. If converges, find its limit.
(a) $\left\{\frac{2016+(-1)^{n}}{n^{2016}}\right\}_{n=1}^{\infty}$
(b) $\left\{\sqrt{\frac{7 n+6 n^{3}+n^{2}}{(n+3)\left(n^{2}+8\right)}}\right\}_{n=4}^{\infty}$.
(c) $\left\{\frac{1}{2} \ln \left(n^{2}+2 n-4\right)-\ln (n+6)\right\}_{n=10}^{\infty}$
10. Evaluate the integral $\int \frac{(x-1)^{2}}{5 \sqrt{25-(x-1)^{2}}} d x$.
11. Compute $S=\sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)$.
12. Write out the form of the partial fraction decomposition (do not try to solve)

$$
\frac{20 x^{3}+12 x^{2}+x}{\left(x^{3}-x\right)\left(x^{3}+2 x^{2}-3 x\right)\left(x^{2}+x+1\right)\left(x^{2}+9\right)^{2}}
$$

13. Evaluate the integral $\int \frac{5 x^{2}+x+12}{x^{3}+4 x} d x$
14. Assuming that the sequence defined recursively by $a_{1}=1, a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{16}{a_{n}}\right)$ is convergent, find its limit.
15. For what values of x the series $\sum_{n=0}^{\infty}(4 x-3)^{n+3}$ converges? What is the sum of the series?
