10.3: The Integral and Comparison Tests; Estimating Sums

- THE TEST FOR DIVERGENCE: If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum a_n$ is divergent.
- THE INTEGRAL TEST: Let $\sum a_n$ be a **positive** series. If f is a continuous and decreasing function on $[a, \infty)$ such that $a_n = f(n)$ for all $n \ge a$ then $\sum a_n$ and $\int_a^\infty f(x) \, \mathrm{d}x$ both converge or both diverge.
- THE COMPARISON TEST: Suppose that $\sum a_n$ and $\sum b_n$ are series with **nonnegative** terms and $a_n \leq b_n$ for all n.
 - 1. If $\sum b_n$ is convergent then $\sum a_n$ is also convergent.
 - 2. If $\sum a_n$ is divergent then $\sum b_n$ is also divergent.
- LIMIT COMPARISON TEST: Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive** terms . If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

where c is a finite number and c > 0, then either both series converge or both diverge.

- The *p*-series, $\sum_{n=1}^{\infty} \frac{1}{n^p}$, converges if p > 1 and diverges if $p \le 1$.
- REMAINDER ESTIMATE FOR THE INTEGRAL TEST: If $\sum a_n$ converges by the Integral Test and $R_n = s s_n$, then

$$\int_{n+1}^{\infty} f(x) \, \mathrm{d}x \le R_n \le \int_{n}^{\infty} f(x) \, \mathrm{d}x$$

Examples.

1. Determine if the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^4}$ is convergent or divergent.

2. Find the values of p for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ is divergent.

3. Determine if the following series is convergent or divergent:

(a)
$$\sum_{n=1}^{\infty} \frac{2012}{\sqrt[7]{n^5} \sqrt[3]{8n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 + 12}{\sqrt{n^6 + 6}}$$

(c)
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^7}\right)$$

(d)
$$\sum_{n=1}^{\infty} \frac{5n^5 + e^{-5n}}{6n^6 - e^{-6n}}$$

4. Find the values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)n^p}$ is convergent.

5. (a) If $\sum_{n=1}^{1000} \frac{1}{n^6}$ is used to approximate $\sum_{n=1}^{\infty} \frac{1}{n^6}$, find an upper bound on the error using the Integral Test.

(b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^6}$ correct to 11 decimal places.

- 6. Given the series $\sum_{n=1}^{\infty} n^3 e^{-n^4}.$
 - (a) Show that the series converges.

(b) Find an upper bound for the error approximating this series by its 5th partial sum s_5 .

10.4: Other Convergence Tests

- ALTERNATING SERIES TEST: If $b_n > 0$, $\lim_{n \to \infty} b_n = 0$ and the sequence $\{b_n\}$ is decreasing then the series $\sum (-1)^n b_n$ is convergent.
- RATIO TEST: For a series $\sum a_n$ with nonzero terms define $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.
 - 1. If L < 1 then the series is absolutely convergent (which implies the series is convergent.)
 - 2. If L > 1 then the series is divergent.
 - 3. If L=1 then the series may be divergent, conditionally convergent or absolutely convergent (test fails).
- The Alternating Series Theorem. If $\sum_{n=1}^{\infty} (-1)^n b_n$ is a convergent alternating series and you used a partial sum s_n to approximate the sum s (i.e. $s \approx s_n$) then $|R_n| \leq b_{n+1}$.

Examples

- 7. Determine whether the following series converges absolutely, converges but not absolutely, or diverges.
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$, where p is a real parameter.

(b)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n\sqrt[4]{\ln n}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-9)^n}{(n+1)!}$$

(d)
$$\sum_{n=5}^{\infty} \frac{(-1)^{n-1}7^{n-1}}{4^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{n^2 + n + 1}$$

8. Which of the following statements is TRUE?

(a) If
$$a_n > 0$$
 for $n \ge 1$ and $\sum_{n=1}^{\infty} (-1)^n a_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$a_n > 0$$
 for $n \ge 1$ and $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.

(c) If
$$\lim_{n\to\infty} a_n = 0$$
 then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.

(d) If
$$a_n > 0$$
 for $n \ge 1$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{e}{2}$ then $\sum_{n=1}^{\infty} a_n$ converges.

- 9. Given the series $\sum_{n=1}^{\infty} (-1)^{n+1} n^3 e^{-n^4}$.
 - (a) Show that the series converges.

(b) Find an upper bound for the error approximating this series by its 5th partial sum s_5 .