

Math 152/172

WEEK in REVIEW 2

Sections 7.1, 7.2, 7.3

1. Find the area of the region bounded by the line $y=x$ and the parabola $y=6-x^{2}$.

$$
\begin{aligned}
y=6=x^{2}
\end{aligned} \left\lvert\, \begin{aligned}
& y=x\left|\begin{array}{l}
\text { points of intersection: } \\
6-x^{2}=x \\
x^{2}+x-6=0 \\
(x+3)(x-2)=0 \\
x=-3 \text { or } x=2
\end{array}\right| \begin{array}{l}
t=\int_{-3}^{2}\left(b-x^{2}-x\right) d x \\
\\
=\left(6 x-\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)_{-3}^{2} \\
\\
=6(2)-\frac{8}{3}-\frac{4}{2}-6(-3)+\frac{(-3)^{3}}{3}+\frac{(-3)^{2}}{2} \\
\\
=12-\frac{8}{3}-2+18-9+\frac{9}{24}=19+\frac{-16+27}{6} \\
\\
=19+\frac{11}{6}=\frac{2,177}{6}
\end{array}
\end{aligned}\right.
$$

2. Find the area of the region between $x=2 \cos x$ and $x=2-2 \cos x, 0 \leq x \leq \pi$

3. Find the area of the region between $x=y^{2}$ and $x=32-y^{2}$ from $y=-2$ to $y=2$.

4. Find the area of the region between lines $\begin{gathered}y=\frac{5-x}{2} \\ x=-2 y+5,\end{gathered}, \begin{gathered}y=x+1 \\ =y-1\end{gathered}$ and $\underbrace{y=0}_{x-a x i y}$.

$$
\begin{aligned}
& \text { Point of intersection: } \\
& -2 y+5=y-1 \\
& 6=3 y \Rightarrow y=2 \Rightarrow x=y-1=1 \\
& x=\int^{1}(x+1) d x+\int_{1}^{5}\left(\frac{5}{2}-\frac{x}{2}\right) d x \\
& =\left(\frac{x^{2}}{2}+x\right)_{-1}^{1}+\left(\frac{5}{2} x-\frac{x^{2}}{4}\right)_{1}^{5} \\
& =\frac{1}{2}+1-\frac{1}{2}+1+\frac{5}{2} \cdot 5-\frac{25}{4}-\frac{5}{2}+\frac{1}{4}=. \\
& \left.A=\int_{0}^{2}[5-2 y)-(y-1)\right] d y=\int_{0}^{2}(6-3 y) d y \\
& =\left[6 y-\frac{3 y^{2}}{2}\right]_{0}^{2}=12-\frac{3(4)}{2}=6
\end{aligned}
$$

$$
\begin{array}{r}
V=\int_{a}^{b} A(x) d x \text {, where } A(x) \text { is the area of a moving } \\
\text { cross-section }
\end{array}
$$

5. The base of a certain solid is the region in the $x y$-plane bounded by the parabolas $y=x^{2}$ and $x=y^{2}$. Find the volume of this solid if every cross section perpendicular to the x-axis is a square with base in the $x y$-plane.

$$
\begin{gathered}
\text { Integrate for } x \\
0 \leq x \leq 1 \\
t=y^{2} \\
y=[t o p]-[b o t t o m] \\
y=\sqrt{x}-x^{2} \\
A(x)=y^{2}=\left(\sqrt{x}-x^{2}\right)^{2} \\
=x-2 \sqrt{x} x^{2}+x^{4} \\
A(x)=x-2 x^{5 / 2}+x^{4} \\
V=\int_{0}^{1} t(x) d x=\int_{0}^{1}\left(x-2 x^{5 / 2}+x^{4}\right) d x \\
=\left[\frac{x^{2}}{2}-2 \cdot \frac{x^{5 / 2+1}}{5 / 2+1}+\frac{x^{5}}{5}\right]_{0}^{1}=\frac{1}{2}-\frac{4}{7}+\frac{1}{5}
\end{gathered}
$$

6. Find the volume of a pyramid with height h and rectangular base with dimensions b and
$2 b$.

$$
\begin{gathered}
\text { Equation of the line } \\
\text { through }(b, 0) \text { and }(0, h) \\
\operatorname{slope}=-\frac{h}{b} \\
y-h=-\frac{h}{b} \cdot x \\
x=-\frac{b}{h}(y-h) \\
x=-\frac{b}{h} y+b
\end{gathered}
$$

Integrate for $y, 0 \leq y \leq h$.
Pick $0 \leq y \leq h$, do the
plain perpendicular
to the y-axis through y Cross-section is a rectangle with dimensions $2 x$ and x

$$
A=(2 x)(x)=2 x^{2}
$$

$$
\begin{aligned}
A & =(2 x)(x)=\alpha x \\
A(y) & =2\left(b-\frac{b}{h} y\right)^{2}=2 b^{2}\left(1-\frac{1}{h} y\right)^{2}
\end{aligned}
$$

$$
V=\int_{0}^{h} f(y) d y=2 b^{2} \int_{0}^{h}\left(1-\frac{1}{h} y\right)^{2} d y
$$

$$
=2 b^{2} \int_{0}^{h}\left(1-\frac{2}{h} y+\frac{1}{h^{2}} y^{2}\right) d y
$$

$$
=2 b^{2}\left[y-\frac{2 y^{2}}{2 h}+\frac{1}{h^{2}} \frac{y^{3}}{3}\right]_{0}^{h}
$$

$$
=2 b^{2}\left(h-\frac{h^{2}}{k}+\frac{h^{2}}{3 h^{2}}\right)
$$

$$
=\frac{2}{3} b^{2} h
$$

washers.

$$
\begin{aligned}
& \left.V_{x}=\pi \int_{a}^{b}\left([\text { outer radius }]^{2}-\text { [inner radius }\right]^{2}\right) d x \\
& V_{y}=\pi \int_{c}^{d}\left([\text { outer radius }]^{2}-[\text { inner radius }]^{2}\right) d y
\end{aligned}
$$

cylindrical shells: $\quad V_{x}=2 \pi \int_{a}^{b}[$ radius $][$ height $] d y$

$$
v_{y}=2 \pi \int_{c}^{d}[\text { radius }][\text { height }] d x
$$

7. Find the volume generated by rotating the region bounded by the given curves about the specified line.

$$
\begin{aligned}
& \underset{x \text {-axis }}{\text { (a) } y=\frac{1}{x^{4}}}, x=\frac{1}{2}, x=1, \underbrace{y=0}, \quad \text { about the } y \text {-axis } \\
& \text { shells: integrate for } x, \frac{1}{2} \leq x \leq 1 \\
& {[\text { height }]=\frac{1}{x^{4}}} \\
& \text { [radius] }=x \\
& \left.V_{y}=2 \pi \int_{1 / 2}^{1} x \cdot \frac{1}{x^{4}} d x=2 \pi \int_{1 / 2}^{1} \frac{1}{x^{3}} d x=2 \pi \frac{x^{-3+1}}{-3+1}\right]_{1 / 2}^{1} \\
& \left.=2 \pi \cdot \frac{x^{-2}}{-2}\right]_{1 / 2}^{1}=\pi(-1+4)=3 \pi
\end{aligned}
$$

(b) $y=\frac{y}{=} x^{3}, x=0, y=27, \quad$ about the x-axis

$$
\begin{array}{ll}
\text { _ }
\end{array}
$$

shells: integrate for $y, 0 \leq y \leq 27$

$$
\begin{aligned}
& {[\text { radius] }=y} \\
& \text { [height] }=\sqrt[3]{y} \\
& \begin{aligned}
V_{x} & =2 \pi \int_{0}^{27} y^{\sqrt[3]{y}} d y \\
& \left.=2 \pi \int_{0}^{27} y^{4 / 3} d y=2 \pi \frac{y^{4 / 3+1}}{4 / 3+1}\right]_{0}^{27} \\
& \left.=2 \pi \cdot \frac{3}{7} y^{7 / 3}\right]_{0}^{27}=\frac{6 \pi}{7} 3^{7}=\frac{6 \pi}{7}(2,187)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { parallel to the } y \text {-axis. } \\
& \text { (c) } y=\sqrt{x}, y=4 x \text {, about } \overparen{x=-1} \\
& \begin{array}{l}
\text { shells. integrate for } x \\
\\
0 \leq x \leq \frac{1}{16}
\end{array} \\
& \text { [radius] }=x+1 \\
& \text { [height] }=\sqrt{x}-4 x \\
& \begin{aligned}
V & =2 \pi \int_{0}^{1 / 16}(x+1)(\sqrt{x}-4 x) d x \\
& \left.=2 \pi \int_{0}^{1 / 16}(x)^{x^{3 / 2}}-4 x^{2}+\sqrt{x}-4 x\right) d x
\end{aligned} \\
& =2 \pi\left(\frac{x^{5 / 2}}{5 / 2}-\frac{4 x^{3}}{3}+\frac{x^{3 / 2}}{3 / 2}-\frac{4 x^{2}}{2}\right)_{0}^{1 / 16} \\
& =2 \pi\left(\frac{2}{5}\left(\frac{1}{16}\right)^{5 / 2}-\frac{4}{3}\left(\frac{1}{16}\right)^{3}+\frac{2}{3}\left(\frac{1}{16}\right)^{3 / 2}-2\left(\frac{1}{16}\right)^{2}\right) \\
& =2 \pi\left(\frac{2}{5}(1024)-\frac{4}{3}\left(\frac{1}{4096}\right)+\frac{2}{3} \frac{1}{64}-\frac{2}{256}\right) \\
& \text { [inner radius] }=1+y^{2} \\
& \text { [outer radius] }=1+\frac{y}{4} \\
& V=\pi \int_{0}^{1 / 4}\left[\left(1+\frac{y}{4}\right)^{2}-\left(1+y^{2}\right)^{2}\right] d y \\
& =\pi \int_{0}^{1 / 4}\left(x+\frac{y}{2}+\frac{y^{2}}{16}-x-2 y^{2}-y^{4}\right) d y \\
& \begin{array}{l}
=\pi\left(\frac{y^{2}}{4}+\frac{y^{3}}{48}-\frac{2 y^{3}}{3}-\frac{y^{5}}{5}\right)_{0}^{1 / 4} \\
=\pi\left(\frac{1}{16 \cdot 4}+\frac{1}{64 \cdot 48}-\frac{2}{3} \cdot \frac{1}{64}-\frac{1}{5} \cdot \frac{1}{1024}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [inner radius] }=3-\sqrt{x} \\
& \text { [outer radius] }=3-x^{2} \\
& V=\pi \int_{0}^{1}\left[\left(3-x^{2}\right)^{2}-(3-\sqrt{x})^{2}\right] d x \\
& =\pi \int_{0}^{1}\left(g-6 x^{2}+x^{4}-g+6 \sqrt{x}-x\right) d x \\
& =\pi\left(-\frac{6 x^{3}}{3}+\frac{x^{5}}{5}+6 \cdot x^{3 / 2} \cdot \frac{2}{3}-\frac{x^{2}}{2}\right)_{0}^{1} \\
& =\pi\left(-2+\frac{1}{5}+4-\frac{1}{2}\right)=\pi\left(2-\frac{1}{2}+\frac{1}{5}\right) \\
& =\pi \frac{20-5+2}{10}=\frac{17 \pi}{10} \\
& \text { shells: integrate for } y, 0 \leq y \leq 1 \\
& \text { [height] }=\sqrt{y}-y^{2} \\
& \text { [radius] }=3-y \\
& V=2 \pi \int_{0}^{1}(3-y)\left(\sqrt{y}-y^{2}\right) d y=2 \pi \int_{0}^{1}\left(3 \sqrt{y}-y^{3 / 2}-3 y^{2}+y^{3}\right) d y \\
& =2 \pi\left(\beta y^{3 / 2} \cdot \frac{2}{3}-y^{5 / 2} \cdot \frac{2}{5}-\frac{3 y^{3}}{3}+y^{4}\right)_{0}^{1} \\
& =2 \pi\left(2-\frac{2}{5}-1+\frac{1}{4}\right)=2 \pi\left(\frac{20-8+5}{20}\right)=\frac{17 \pi}{10}
\end{aligned}
$$

