Section 8.3: Trigonometric Substitutions

Expression	Substitution	Identity $\quad \int \sec t d t=\ln (\sec t+\tan t /+C$
$\sqrt{a^{2}-x^{2}}$	$x=a \sin t,-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$	$1-\sin ^{2} t=\cos ^{2} t \quad \int \sec ^{3} t d t=\frac{1}{2}(\sec t \tan t+\ln (\sec t+\tan t)+c$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan t,-\frac{\pi}{2}<t<\frac{\pi}{2}$	$1+\tan ^{2} t=\sec ^{2} t$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec t, 0 \leq t \leq \frac{\pi}{2}$ or $\pi \leq t \leq \frac{3 \pi}{2}$	$\sec ^{2} t-1=\tan ^{2} t$

Problems.

1. Evaluate the integral

$$
\begin{aligned}
\left|\begin{array}{rl}
\sqrt{4+x^{2}} & =\sqrt{4+4 \tan ^{2} t} \\
& =\sqrt{4\left(1+\tan ^{2} t\right)} \\
& =\sqrt{4 \sec ^{2} t} \\
\sqrt{4+x^{2}} & =2 \sec t \\
\sec t & =\frac{\sqrt{4+x^{2}}}{2}
\end{array}\right| \begin{array}{l}
\left.=4\left(\sec ^{2} t-1\right) \sec t d t=4 \int \sec ^{3} t d t-4 \int \sec t d t \tan t+\ln |\sec t+\tan t|\right)-4 \ln |\sec t+\tan t|+C \\
\\
=2 \sec t \tan t-\ln |\sec t+\tan t|+C \\
\end{array} \quad 2 \cdot \frac{\sqrt{4+x^{2}}}{2} \frac{x}{2}-\ln \left|\frac{\sqrt{4+x^{2}}}{2}+\frac{x}{2}\right|+C
\end{aligned}
$$

$u=6 x-x^{2}$
$d u=6-2 x$
(b) $\int \frac{x}{\sqrt{6 x-x^{2}}} d x$ Complete the square:
$6 x-x^{2}=-\left(x^{2}-6 x\right)=-\left(x^{2}\right.$
$\begin{aligned} & 6 x-x^{2}=-\left(x^{2}-6 x\right)=-\left(x^{2}-2 \cdot 3 \cdot x+3^{2}-3^{2}\right)=-\left(x^{2}-6 x+9-9\right)=-\left((x-3)^{2}-9\right)=9-(\\ &=\int \frac{x}{\sqrt{9(x-3)^{2}} d x\left|\begin{array}{l}x-3=3 \sin t \Rightarrow t=\sin ^{-1}\left(\frac{x-3}{3}\right) \\ x=3 \sin t+3 \\ d x=3 \cos t d t \\ \sqrt{9-9 \sin ^{2} t}=\sqrt{9\left(1-\sin ^{2} t\right)} \\ \sqrt{9-(x-3)^{2}}=\sqrt{9 \cos ^{2} t} \\ 3 \cos t=\sqrt{9-(x-3)^{2}}\end{array}\right|=\int \frac{3 \sin t+3}{3 \cos t} 3 \cos t d t}=\int(3 \sin t+3) d t=-3 \cos t+3 t+C \\ &=-\sqrt{9-(x-3)^{2}}+3 \cdot \sin ^{-1}\left(\frac{x-3}{3}\right)+C\end{aligned}$

Section 8.4: Integration Of Rational Functions By Partial Fractions

- Rational function $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomials.
- Make sure that the fraction is proper, that is the degree of the numerator is strictly less than the degree of denominator. Otherwise, do long divisions.
- Factor out the denominator $Q(x)$ as far as you can.
- For each factor in the denominator use the following table:

Factor	Corresponding Partial Fraction
linear factor $a x+b$	$\frac{A}{a x+b}$
linear repeated factor $(a x+b)^{r}$	$\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{r}}{(a x+b)^{r}}$
quadratic irreducible factor $a x^{2}+b x+c$,	
$b^{2}-4 a c<0$	

- Solve for numerators using roots of the denominator and/or matching powers of x. Then integrate.

Problems.

3. Decompose into partial fractions the rational function without computing coefficient of the decomposition:
(a) $\frac{7}{x\left(x^{3}-2 x^{2}+2 x\right)}=\frac{7}{x^{2}(\underbrace{}_{\begin{array}{l}\left.x^{2}-2 x+2\right) \\ \text { quadratic } \\ \text { irreducible }\end{array}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}-2 x+2}}$
(b) $\frac{x-1}{(x+2)^{3}\left(x^{2}-2 x+5\right)^{2}}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{(x+2)^{3}}+\frac{D x+E}{x^{2}-2 x+5}+\frac{F x+G}{\left(x^{2}-2 x+5\right)^{2}}$

$$
(-2)^{2}-4(5)=-16<0
$$

4. Evaluate the integral

$$
\begin{aligned}
& \text { (a) } \int \frac{7}{(x-2)(x+5)} d x \\
& \frac{7}{(x-2)(x+5)}=\frac{A(x+5)+B(x-2)}{(x-2)(x+5)} \\
& 7=A(x+5)+B(x-2) \\
& x=-5: \quad 7=0+B(-5-2) \\
& 7=-7 B \Rightarrow B=-1 \\
& x=2: \quad 7=A(2+5)+0 \\
& 7=7 A \Rightarrow A=1
\end{aligned}
$$

(b) $\int \frac{x^{5}}{(x-2)^{2}} d x$

$$
\frac{x^{5}}{x^{2}-4 x+4} \text { improper fraction }
$$

$$
\frac{x^{5}}{x^{2}-4 x+4}=x^{3}+4 x^{2}+12 x+32+\frac{80 x-128}{x^{2}-4 x+4}
$$

$$
\begin{aligned}
& x^{2}-4 x+4 \sqrt{x^{3}+4 x^{2}+12 x+32} \\
& \frac{\frac{x^{5}-4 x^{4}+4 x^{3}}{4 x^{4}-4 x^{3}}}{\frac{4 x^{4}-16 x^{3}+16 x^{2}}{12 x^{3}-16 x^{2}}} \\
& \frac{\frac{12 x^{3}-48 x^{2}+48 x}{32 x^{2}-48 x}}{-32 x^{2}-128 x+128} \\
& 80 x-128
\end{aligned}
$$

$$
\frac{80 x-128}{(x-2)^{2}}=16 \frac{5 x-8}{(x-2)^{2}}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}
$$

$$
16 \frac{5 x-8}{(x-2)^{2}}=\frac{A(x-2)+B}{(x-2)^{2}}
$$

$$
80 x-128=A(x-2)+B
$$

$$
x=2: 160-128=B \Rightarrow B=32
$$

$$
x=0:-128=-2 A+B
$$

$$
2 A=B+128
$$

$$
A=\frac{B+128}{2}=\frac{32+128}{2}=80=A
$$

$$
\begin{aligned}
\int \frac{x^{5} d x}{x^{2}-4 x+4} & =\int\left[x^{3}+4 x^{2}+12 x+32+\frac{80}{x-2}+\frac{32}{(x-2)^{2}}\right] d x \\
& =\frac{x^{4}}{4}+\frac{4 x^{3}}{3}+\frac{12 x^{2}}{2}+32 x+80 \ln |x-2|-\frac{32}{x-2}+C
\end{aligned}
$$

(c) $\int \frac{x^{2}-3 x+7}{(\underbrace{x-1})(\underbrace{x^{2}+1})} d x$ linear quadratic

$$
\begin{aligned}
\frac{x^{2}-3 x+7}{(x-1)\left(x^{2}+1\right)} & =\frac{A}{x-1}+\frac{B x+C}{x^{2}+1} \\
\frac{x^{2}-3 x+7}{(x-1)\left(x^{3}+1\right)} & =\frac{A\left(x^{2}+1\right)+(B x+C)(x-1)}{(x-1)\left(x^{2}+1\right)} \\
x^{2}-3 x+7 & =A x^{2}+A+B x^{2}-B x+C x-C \\
x^{2}-3 x+7 & =x^{2}(A+B)+x(-B+C)+(A-C)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}: \\
& x:\left\{\begin{array}{l}
1 \\
1
\end{array}=\left\{\begin{array}{l}
A+B \Rightarrow B=1-A \\
1
\end{array}=-B+C\right.\right. \\
& 7=A-C \Rightarrow C=A-7 \\
&-3=-(1-A)+A-7 \\
&-3=-1+A+A-7 \\
& 2 A=5 \Rightarrow A=\frac{5}{2} \\
& B=1-A=1-\frac{5}{2}=-\frac{3}{2}=B
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{x^{2}-3 x+7 d x}{(x-1)\left(x^{2}+1\right)}=\left[\left[\frac{5}{2} \frac{1}{x-1}+\frac{-\frac{3}{2} x-\frac{9}{2}}{x^{2}+1}\right] d x=\frac{5}{2} \int \frac{d x}{x-1}+\int \frac{-3 / 2 x}{x^{2}+1} d x+\int \frac{-9 / 2}{u} d x\right. \\
&\left.\begin{array}{c}
x^{2}+1 \\
d u=2 x d x \Rightarrow
\end{array}\right) x d x=\frac{d u}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } \int \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+x+1\right)} \\
& \frac{1}{\left(x^{2}+1\right)\left(x^{2}+x+1\right)}=\frac{A x+B}{x^{2}+1}+\frac{C x+D}{x^{2}+x+1} \\
& \frac{1}{\left(x^{2}+1\right)\left(x^{2}+x+1\right)}=\frac{(A x+B)\left(x^{2}+x+1\right)+(C x+D)\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{2}+x+1\right)} \\
& 0 \cdot x^{3}+0 \cdot x^{2}+0 \cdot x+1=A x^{3}+A x^{2}+A x+B x^{2}+B x+B+C x^{3}+C x+D x^{2}+D \\
& =x^{3}(A+C)+x^{2}(A+B+D)+x(A+B+C)+(B+\infty) \\
& \int \frac{1 d x}{\left(x^{2}+1\right)\left(x^{2}+x+1\right)}=\int\left[\frac{-x}{x^{2}+1}+\frac{x+1}{x^{2}+x+1}\right] d x \\
& x^{3}: 0=A+C \quad C=1 \\
& x^{2}: 0=A+B+D \Rightarrow A=-1 \\
& x: 0=A+B+C \Rightarrow B=0 \\
& 1: 1=B+D \Rightarrow D=1 \\
& \begin{array}{l}
0=A+B+C \\
0=\underbrace{(A+C)}_{0}+B \Rightarrow 0=0+B
\end{array} \\
& -\int \frac{x}{x^{2}+1} d x\left|\begin{array}{c}
u=x^{2}+1 \\
d u=2 x d x d u \\
x d x=\frac{d u}{2}
\end{array}\right|=-\int \frac{\frac{d u}{2}}{u}=-\frac{1}{2} \int \frac{d u}{u}=-\frac{1}{2} \ln |u|+C=-\frac{1}{2} \ln \left|x^{2}+1\right|+C \\
& \int \frac{x+1}{x^{2}+x+1} d x=\int \frac{x+1}{(x+1 / 2)^{2}+3 / 4} d x \quad\left|\begin{array}{l}
u=x+1 / 2 \Rightarrow x=u-1 / 2 \\
d u=d x
\end{array}\right|=\int \frac{u-1 / 2+1}{u^{2}+\frac{3}{4}} d u=\int \frac{u+1 / 2}{u^{2}+\frac{3}{4}} d u \\
& \text { Complete the square: } \\
& \left.\left.x^{2}+x+1=x^{2}+2 \cdot x \cdot \frac{1}{2}+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1 \right\rvert\,=\int \frac{u}{u^{2}+\frac{3}{4}} d u+\frac{1}{2} \int \frac{d u}{u^{2}+3 / 4}\right)\left|\begin{array}{c}
v=u^{2}+3 / 4 \\
d v=2 u d u
\end{array}\right| \\
& x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} \\
& \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C \\
& =\frac{1}{2} \int \frac{d v}{v}+\frac{1}{2} \int \frac{d u}{u^{2}+3 / 4} \\
& =\frac{1}{2} \ln |v|+\frac{1}{2} \frac{1}{\frac{\sqrt{3}}{2}} \arctan \frac{u}{\frac{\sqrt{3}}{2}}+c \\
& =\frac{1}{2} \ln \left|u^{2}+\frac{3}{4}\right|+\frac{1}{\sqrt{3}} \arctan \frac{2 u}{\sqrt{3}}+c \\
& =\frac{1}{2} \ln \left|\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right|+\frac{1}{\sqrt{3}} \arctan \frac{2\left(x+\frac{1}{2}\right)}{\sqrt{3}}+C \\
& \int \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+x+1\right)}=-\frac{1}{2} \ln \left|x^{2}+1\right|+\frac{1}{2} \ln \left|\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right|+\frac{1}{\sqrt{3}} \arctan \frac{2 x+1}{\sqrt{3}}+C
\end{aligned}
$$

Section 8.9: Improper Integrals

- TYPE I: Infinite Interval and Continuous Integrand.

ఎ $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$
$\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x$
$\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$ where a is any real number

- TYPE II: Discontinuous Integrand and Finite Interval:
if f is discontinuous at b, then $\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x$
if f is discontinuous at a, then $\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x$
if f has discontinuity at $c(a<c<b)$, then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{1}^{\infty} \frac{d x}{x^{p}}=\left\{\begin{array}{ll}\frac{1}{p-1}, & \text { if } p>1 \\ \text { diverges, }, & \text { if } p \leq 1\end{array} \int_{0}^{1} \frac{d x}{x^{p}}= \begin{cases}\frac{1}{1-p}, & \text { if } p \leq 1 \\ \text { diverges, }, & \text { if } p \geq 1\end{cases}\right.$
- Comparison theorem. Suppose that f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$.

1. If $\int_{a}^{\infty} f(x) d x$ is convergent, then $\int_{a}^{\infty} g(x) d x$ is convergent.
2. If $\int_{a}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty} f(x) d x$ is divergent.
3. Compute the following integrals or show that they diverge.

$$
\text { (a) } \begin{aligned}
\int_{c}^{\infty} \frac{d x}{x \ln ^{5} x}=\lim _{t \rightarrow \infty} \int_{e}^{t} \frac{d x}{x \ln ^{5} x}\left|\begin{array}{l}
u=\ln x \\
d u=\frac{d x}{x} \\
x=e=u=\ln e=1 \\
x=t \Rightarrow u=\ln t
\end{array}\right| \\
=\lim _{t \rightarrow \infty} \int_{1}^{\ln t} \frac{d u}{u^{5}}=\left.\lim _{t \rightarrow \infty} \frac{u^{-5+1}}{-5+1}\right|_{1} ^{\ln t}=-\frac{1}{4}\left[\lim _{t \rightarrow \infty}(\ln t)^{-4}-1\right] \\
=\frac{1}{4} \text { convergent }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int_{-\infty}^{0}(1+x) e^{x} d x=\lim _{t \rightarrow-\infty} \int_{t}^{0}(1+x) e^{x} d x=\left|\begin{array}{cc}
u=1+x & v^{\prime}=e^{x} \\
u^{\prime}=1 & v=e^{x}
\end{array}\right| \begin{array}{c}
\lim _{x \rightarrow \infty} e^{x}=\infty \\
\lim _{x \rightarrow-\infty} e^{x}=0
\end{array} \\
& =\lim _{t \rightarrow-\infty}\left[\left.(1+x) e^{x}\right|_{t} ^{0}-\int_{t}^{0} e^{x} d x\right]=\lim _{t \rightarrow-\infty}\left(e^{0}-(1+t) e^{t}-\left.e^{x}\right|_{t} ^{0}\right)=\lim _{t \rightarrow-\infty}\left(x-(1+t) e^{t}-e^{0}+e^{t}\right) \\
& =-\lim _{t \rightarrow-\infty}(1+t) e^{t}=|0 \cdot \infty|=-\lim _{t \rightarrow-\infty} \frac{1+t}{e^{-t}}=-\lim _{t \rightarrow-\infty} \frac{1}{-e^{-t}}=\lim _{t \rightarrow-\infty} e^{t}=0 \\
& \text { convergent. }
\end{aligned}
$$

convergent.
must converge.
(c)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{5 x^{4}}{\left(x^{5}+3\right)^{3}} d x=\int_{-\infty}^{0}+\int_{0}^{\infty} \\
& \frac{x^{4}}{\left(x^{5}\right)^{3}}=\frac{x^{4}}{x^{15}}=\frac{1}{x^{11}}
\end{aligned}
$$

$$
p=\|>1 \left\lvert\, \begin{aligned}
&=-\left.\frac{1}{2} \lim _{t \rightarrow-\infty} \frac{1}{\left(x^{5}+3\right)^{2}}\right|_{t} ^{0}-\frac{1}{2} t_{s}^{0} \\
&=-\frac{1}{2}-\frac{1}{3^{2}}+\frac{1}{2} \lim _{t \rightarrow-\infty} \frac{+\frac{0}{\left(t^{5}+3\right)^{2}}-\frac{1}{2}}{} \quad 0 \quad \text { convergent }
\end{aligned}\right.
$$

(d) $\int_{0}^{9} \frac{d x}{\sqrt[3]{x-4}}$ discontinuity @ $x=4$ $\frac{1}{x^{1 / 3}} \quad p=1 / 3<1 \rightarrow$ must converge.

$$
\begin{aligned}
& \left.\frac{1}{x^{1 / 3}} \quad p=1 / 3<1 \rightarrow \int_{0}^{4}+\int_{4}^{9}=\lim _{t \rightarrow 4^{-}} \int_{0}^{t} \frac{d x}{(x-4)^{1 / 3}}+\lim _{s \rightarrow 4^{+}} \int_{s}^{9} \frac{d x}{(x-4)^{1 / 3}} \right\rvert\,=\frac{2 / 3}{9}+c-\frac{3}{x-4} \\
& =\left.\lim _{t \rightarrow 4^{-}} \frac{3}{2}(x-4)^{2 / 3}\right|_{0} ^{t}+\left.\lim _{s \rightarrow 4^{+}} \frac{3}{2}(x-4)^{2 / 3}\right|_{s} ^{9} \\
& =\frac{3}{2} \lim _{t \rightarrow 4^{-}}(t-4)^{2 / 3}-\frac{3}{2}(-4)^{2 / 3}+\frac{3}{2}(9-4)^{2 / 3}-\frac{3}{2} \lim _{s \rightarrow 4^{+}}(5-4)^{2 / 3}=\frac{3}{2}(\sqrt[3]{25}-\sqrt[3]{16})
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\int \frac{d x}{(x-4)^{1 / 3}}=\frac{(x-4)^{-1 / 3+1}}{-1 / 3+1}+C \\
=\frac{(x-4)^{2 / 3}}{2 / 3}+C=\frac{3}{2}(x-4)^{2 / 3}+C
\end{array}\right.
$$

6. Determine whether the given integrals converge or diverge using the Comparison Theorem.
\qquad (a) $\int_{0}^{\infty} \frac{d x}{x^{7}+e^{7 x}}$ converges by the comparison The (part 1).

$$
\begin{aligned}
& \frac{1}{x^{7}+e^{7 x}} \leq \frac{1}{e^{7 x}} \\
& \int_{0}^{\infty} e^{-7 x} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-7 x} d x=\lim _{t \rightarrow \infty}\left(-\left.\frac{1}{7} e^{-7 x}\right|_{0} ^{t}\right)=-\frac{1}{7} \lim _{x \rightarrow \infty} e^{-7 t}+\frac{1}{7} e^{0}=\frac{1}{7}
\end{aligned}
$$

convergent.
(b) $\int_{5}^{\infty} \frac{x^{2}}{x^{5 / 2}-x} d x$-diverges by the Comparison Thu (part 2)

$$
\begin{aligned}
& \frac{x^{2}}{x^{5 / 2}}=\frac{1}{x^{5 / 2-2}}=\frac{1}{x^{1 / 2}} \quad p=\frac{1}{2}<1 \\
& \frac{1}{x^{1 / 2}}=\frac{x^{2}}{x^{5 / 2}} \leq \frac{x^{2}}{x^{5 / 2}-x} \\
& \int_{5}^{\infty} \frac{d x}{x^{1 / 2}} \text { is divergent }
\end{aligned}
$$

(c) $\int_{10}^{\infty} \frac{\sin ^{4}(7 x)}{x^{7}} d x$ converges by the Comparison Thu (part 1)

$$
\frac{0}{x^{7}} \frac{\sin ^{4}(7 x)}{x^{7}} \leq \frac{1}{x^{7}}
$$

$\int_{10}^{\infty} \frac{d x}{x^{7}}$ is convergent, since $p=7>1$

