WEEK in REVIEW 6

Sections 9.3, 9.4, 10.1

Section 9.3. Arc Length

- If a curve C is defined by the equations $x = x(t), y = y(t), a \le t \le b$, then $L = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$
- If a curve C is given by the equation y = y(x), $a \le x \le b$, then $L = \int_a^b \sqrt{1 + [y'(x)]^2} dx$
- If a curve C is given by the equation x = x(y), $c \le y \le d$, then $L = \int_{c}^{d} \sqrt{1 + [x'(y)]^2} dy$

Problems:

- 1. Find the length of the curve $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \pi/2$.
- 2. Find the length of the curve $x = \frac{1}{4} \ln y \frac{1}{2} y^2$ from y = 1 to y = e.
- 3. A wire hanging between two poles (at x = -10 and x = 10) takes the shape of a catenary with equation $y = 2(e^{x/4} + e^{-x/4}).$

Find the length of the wire.

Section 9.4. Area of a Surface of Revolution

For rotation about the x-axis, the surface area formulas are:

- if a curve is given as $y=y(x), \ a\leq x\leq b,$ then $S.A.=2\pi\int\limits_a^by(x)\sqrt{1+[y'(x)]^2}dx$
- if a curve is described as x = x(y), $c \le y \le d$, then $S.A. = 2\pi \int_c^d y \sqrt{1 + [x'(y)]^2} dy$
- if a curve is defined by $x = x(t), y = y(t), a \le t \le b$, then $S.A. = \int_a^b y(t) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$

For rotation about the y-axis, the surface area formulas are:

- if a curve is given as y = y(x), $a \le x \le b$, then $S.A. = 2\pi \int_a^b x \sqrt{1 + [y'(x)]^2} dx$
- if a curve is described as $x=x(y), c \leq y \leq d$, then $S.A. = 2\pi \int_{c}^{d} x(y) \sqrt{1+[x'(y)]^2} dy$
- if a curve is defined by $x = x(t), y = y(t), a \le t \le b$, then $S.A. = \int_a^b x(t) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$

Problems:

4. The curve $y = x^2$, $0 \le x \le 1$, is rotated about the y-axis. Find the area of the resulting surface.

- 5. The curve $x = 1 \cos(2t)$, $y = 2t + \sin(2t)$, $0 \le t \le \pi/4$ is rotated about the x-axis. Find the area of the resulting surface.
- 6. Set up (but don't evaluate) the integral that gives the surface area obtaine by rotating the curve

$$x = \sin(\pi y^2/8), \quad 1 \le y \le 2,$$

- (a) about the x-axis
- (b) about the y-axis
- 7. The curve $x = \sin(at), y = \cos(at), 0 \le t \le \frac{\pi}{2a}$ is rotated about the x-axis (here a is an arbitrary positive constant). Find the area of the resulting surface.

Section 10.1. Sequences

- If \$\lim_{n→\infty} a_n\$ exists and finite then we say that the sequence \$\{a_n\}\$ converges. Otherwise, we say the sequence diverges. (Recall all techniques for finding limits at infinity.)
- The Squeeze Theorem for Sequences: If $a_n \leq b_n \leq c_n$ for all n and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.
- If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.
- $\{a_n\}$ increasing: show that $a_{n+1} a_n > 0$, or f'(x) > 0 (where f(n) = a n); or $\frac{a_{n+1}}{a_n} > 1$ (provided $a_n > 0$ for all n.) Note: reverse signs for $\{a_n\}$ decreasing.

Problems:

- 8. Define the *n*-th term of the sequence $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\right\}$ and find its limit.
- 9. Determine if the given sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{3n^5 - 12n^3 + 2012}{2012 - 12n^4 - 4n^4 - 9n^5}$$

(b)
$$b_n = \frac{3n^5 - 12n^3 + 2012}{2012 - 12n^4 - 4n^4 - 9n^5 + 11n^6}$$

(c)
$$c_n = \frac{12n^7 + 2012}{2012 - 12n^4 - 4n^5 - 9n^6}$$

10. Determine if the sequence with the given general term $(n \ge 1)$ converges or diverges. If it converges, find the limit.

(a)
$$a_n = \ln(n^2 + 3) - \ln(7n^2 - 5)$$

(b)
$$z_n = \frac{1}{n^4} \sin\left(\frac{1}{n^5}\right)$$

(c)
$$y_n = \frac{(-1)^n}{n^3}$$

(d)
$$x_n = \frac{(-1)^n n}{3n + 33}$$

11. Assuming that the sequence defined recursively by $a_n = 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{9}{a_n} \right)$ is convergent, find its limit.

2

12. Determine whether the given sequence is increasing or decreasing.

(a)
$$\{\arctan(n)\}_{n=1}^{\infty}$$

(b)
$$\{n-2^n\}_{n=1}^{\infty}$$