1. Write out the form of the partial fraction decomposition (do not try to solve)

$$
\frac{20 x^{3}+12 x^{2}+x}{\left(x^{3}-x\right)\left(x^{3}+2 x^{2}-3 x\right)\left(x^{2}+x+1\right)\left(x^{2}+9\right)^{2}}
$$

2. Evaluate the integral
(a) $\int\left(4 x^{2}-25\right)^{-3 / 2} d x$
(b) $\int \frac{(x-1)^{2}}{5 \sqrt{24-x^{2}-2 x}} d x$
(c) $\int \frac{5 x^{2}+x+12}{x^{3}+4 x} d x$
3. Determine whether the given integral is convergent or divergent.
(a) $\int_{1}^{\infty} \frac{4+\cos ^{4} x}{x} d x$
(b) $\int_{1}^{\infty} \frac{3+\sin x}{x^{2}} d x$
(c) $\int_{0}^{\infty} \frac{1}{\sqrt{x}+e^{4 x}} d x$
4. Compute the following integrals or show that they diverge.
(a) $\int_{e}^{\infty} \frac{d x}{x \ln ^{5} x}$
(b) $\int_{-\infty}^{0}(1+x) e^{x} d x$
(c) $\int_{-\infty}^{\infty} \frac{5 x^{4}}{\left(x^{5}+3\right)^{3}} d x$
(d) $\int_{0}^{2017} \frac{1}{\sqrt{2017-x}} d x$
5. The curve $y=\sin x$ for $0 \leq x \leq \pi$ is rotated about the x-axis. Set up, but don't evaluate the integral for the area of the resulting surface.
6. The curve $y=\frac{1}{2}\left(e^{x}+e^{-x}\right), 0 \leq x \leq 1$, is rotated about the x-axis. Find the area of the resulting surface.
7. Set up, but don't evaluate the integral for the length of the curve $x=2 t^{2}, y=t^{3}, 0 \leq t \leq 1$.
8. Find length of the curve $y=\frac{1}{\pi} \ln (\sec (\pi x))$ from the point $(0,0)$ to the point $\left(\frac{1}{6}, \ln \frac{2}{\sqrt{3}}\right)$.
9. Determine if the sequence $\left\{a_{n}\right\}_{n=2}^{\infty}$ is decreasing and bounded:
(a) $a_{n}=\ln n$
(b) $a_{n}=\cos n^{2}$
(c) $a_{n}=e^{-n}$
(d) $a_{n}=e^{n}+11$
(e) $a_{n}=1-\frac{1}{n^{2}}$
10. Determine if the sequence converges or diverges. If converges, find its limit.
(a) $\left\{\frac{2017+(-1)^{n}}{n^{2017}}\right\}_{n=1}^{\infty}$
(b) $\left\{\frac{7 n+6 n^{3}+n^{2}}{(n+3)\left(n^{2}+8\right)}\right\}_{n=4}^{\infty}$
11. Assuming that the sequence defined recursively by $a_{1}=1, a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{16}{a_{n}}\right)$ is convergent, find its limit.
