10.2: Series

- Infinite series $\sum_{n=1}^{\infty} a_{n} \quad(n=1$ for convenience, it can be anything $)$.
- Partial sums: $s_{N}=\sum_{n=1}^{N} a_{n}$. Note $s_{N}=s_{N-1}+a_{N}$.
- If $\left\{s_{N}\right\}_{N=1}^{\infty}$ is convergent and $\lim _{N \rightarrow \infty} s_{N}=s$ exists as a real number, then the series $\sum_{n=1}^{n} a_{n}$ is convergent. The number s is called the sum of the series.
- Series we can sum:
- Geometric Series $\quad \sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}, \quad-1<r<1$
- Telescoping Series
- THE TEST FOR DIVERGENCE: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- The Test for Divergence cannot be used to prove that a series converges. It can only show a series is divergent.

Examples

1. Given a series whose partial sums are given by $s_{n}=(7 n+3) /(n+7)$, find the general term a_{n} of the series and determine if the series converges or diverges. If it converges, find the sum.
2. Find the sum of the following series or show they are divergent:
(a) $\sum_{n=1}^{\infty} \frac{7+5^{n}}{10^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{8}{(n+1)(n+3)}$
3. Write the repeating decimal $0 . \overline{27}$ as a fraction.
4. Use the test for Divergence to determine whether the series diverges.
(a) $\sum_{n=1}^{\infty} \frac{n^{5}}{3\left(n^{4}+3\right)(n+1)}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sqrt{n}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{6-e^{-n}}$

10.3: The Integral and Comparison Tests; Estimating Sums

- THE TEST FOR DIVERGENCE: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum a_{n}$ is divergent.
- THE INTEGRAL TEST: Let $\sum a_{n}$ be a positive series. If f is a continuous and decreasing function on $[a, \infty)$ such that $a_{n}=f(n)$ for all $n \geq a$ then $\sum a_{n}$ and $\int_{a}^{\infty} f(x) \mathrm{d} x$ both converge or both diverge.
- THE COMPARISON TEST: Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with nonnegative terms and $a_{n} \leq b_{n}$ for all n.

1. If $\sum b_{n}$ is convergent then $\sum a_{n}$ is also convergent.
2. If $\sum a_{n}$ is divergent then $\sum b_{n}$ is also divergent.

- LIMIT COMPARISON TEST: Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is a finite number and $c>0$, then either both series converge or both diverge.

- The p-series, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, converges if $p>1$ and diverges if $p \leq 1$.
- REMAINDER ESTIMATE FOR THE INTEGRAL TEST: If $\sum a_{n}$ converges by the Integral Test and $R_{n}=s-s_{n}$, then

$$
\int_{n+1}^{\infty} f(x) \mathrm{d} x \leq R_{n} \leq \int_{n}^{\infty} f(x) \mathrm{d} x
$$

Examples.

6. (a) If $\sum_{n=1}^{1000} \frac{1}{n^{6}}$ is used to approximate $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$, find an upper bound on the error using the Integral Test.
(b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$ correct to 11 decimal places.
7. Given the series $\sum_{n=1}^{\infty} n^{3} e^{-n^{4}}$.
(a) Show that the series converges.
(b) Find an upper bound for the error approximating this series by its 5 th partial sum s_{5}.
8. Find the values of p for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ is divergent.
9. Determine if the following series is convergent or divergent:
(a) $\sum_{n=1}^{\infty} \frac{2012}{\sqrt[7]{n^{5}} \sqrt[3]{8 n}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{2}+12}{\sqrt{n^{6}+6}}$
(c) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n^{7}}\right)$
(d) $\sum_{n=1}^{\infty} \frac{5 n^{5}+e^{-5 n}}{6 n^{6}-e^{-6 n}}$
10. Find the values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{(n+1) n^{p}}$ is convergent.

10.4 : Other Convergence Tests

- ALTERNATING SERIES TEST: If $b_{n}>0, \lim _{n \rightarrow \infty} b_{n}=0$ and the sequence $\left\{b_{n}\right\}$ is decreasing then the series $\sum(-1)^{n} b_{n}$ is convergent.
- RATIO TEST: For a series $\sum a_{n}$ with nonzero terms define $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.

1. If $L<1$ then the series is absolutely convergent (which implies the series is convergent.)
2. If $L>1$ then the series is divergent.
3. If $L=1$ then the series may be divergent, conditionally convergent or absolutely convergent (test fails).

- The Alternating Series Theorem. If $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ is a convergent alternating series and you used a partial sum s_{n} to approximate the sum s (i.e. $s \approx s_{n}$) then $\left|R_{n}\right| \leq b_{n+1}$.

Examples

12. Which of the following statements is TRUE?
(a) If $a_{n}>0$ for $n \geq 1$ and $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $a_{n}>0$ for $n \geq 1$ and $\sum_{n=1}^{\infty} a_{n}$ converges then $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.
(c) If $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.
(d) If $a_{n}>0$ for $n \geq 1$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{e}{2}$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
13. Determine whether the following series converges absolutely, converges but not absolutely, or diverges.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}}$, where p is a real parameter.
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \sqrt[4]{\ln n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-9)^{n}}{(n+1)!}$
(d) $\sum_{n=5}^{\infty} \frac{(-1)^{n-1} 7^{n-1}}{4^{n}}$
(e) $\sum_{n=1}^{\infty} \frac{n \cos (n \pi)}{n^{2}+n+1}$
14. Given the series $\sum_{n=1}^{\infty}(-1)^{n+1} n^{3} e^{-n^{4}}$.
(a) Show that the series converges.
(b) Find an upper bound for the error approximating this series by its 5 th partial sum s_{5}.
