Math 152/172 WEEK in REVIEW 9 Spring 2017
Sections 10.5, 10.6, 10.7

10.5: Power Series

o0
e For a given power series Z cn(z — a)” there are only 3 possibilities:

n=0
1. There is R > 0 such that the series converges if |z —a| < R and diverges if |z —a| > R. We
call such R the radius of convergence.
2. The series converges only for x = a (then R = 0).

3. The series converges for all z (then R = o0).

We find the radius of convergence using the Ratio Test.

An interval of convergence is the interval of all x’s for which the power series converges.

You must check the endpoints x = ¢ = R individually to determine whether or not they are in the
interval of convergence.

1. For the following series find the radius and interval of convergence.
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2. Assume that it is known that the series ch(x —3)" converges when = = 5 and diverges when

n=0
x = —2. What can be said about the convergence or divergence of the following series:
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10.6: Representation of Functions as Power Series

e Geometric Series Formula:
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e Term-by-term Differentiation and Integration of power series:
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If Z ¢n(z — a)™ has radius of convergence R > 0, then f(z) = Z cn(x — a)" is differentiable (and
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therefore continuous) on the interval (a — R,a + R) and
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The radii of convergence of the power series for f’(x) and / f(z)dz are both R.

3. Find a power series representation for the following functions and determine the interval of conver-

gence.
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(@) £) = 1
4
() J(@) = 5=
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(c) flz)= 9_ 4
(d) f(z) =1n(3z +5)
(e) f(z)=2°In(3z +5)
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(f) f(z)= m
(2) f(z) = arctan(162%)

0 dx

1 = as a power series.
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4. Express the integral /



10.7: Taylor and Maclaurin Series

e The Taylor series for f(x) about z = a:
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e The Maclaurin series is the Taylor series about x =0 (i.e. a=0):
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e Known Mclaurin series and their intervals of convergence you must have memorized:

1 o0
_ n _ 2 3
T = 1;)$ = l4+z+zc+z2>+... (1,1)
X 2 3
X X
et = ZH = lfetg+gt. (-00,%)
n=0
oo
_ (=1)"a*" _ e
COS T = ZTH)' = 1—?4’1_54- (—O0,00)
n=0
oo
] _ (_1)n$2n+l _ $3 $5 x7
n=0
> x2ntl 2 2 T
arctanr = Z(—l)"2n+1 = x—§+€—7+... [—1,1]
n=0

Examples.

5. Given that function f has power series expansion (i.e. Taylor series) centered at a = . Find this
expansion and its radius of convergence if it is given that
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6. Find the 20th derivative of f(z) = * at z = 0.
7. Find Taylor series for f(z) = €3 centered at z = 1/3. What is the associated radius of convergence?

1
8. Find Taylor series for f(x) = — centered at x = 5. What is the associated interval of convergence?
T

9. Find Maclaurin series for the following functions:



(a) f(z) = 23sina®
(b) f(z) =sinz
(c) x+32% + ze™®

sin (3x . . .
(32) dx as an infinite series.

10. Express /

11. Find the sum of the series:
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12. Use series to approximate the integral f00'5 22e=" dx with error less than 1073,



