10.5: Power Series

- For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only 3 possibilities:

1. There is $R>0$ such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$. We call such R the radius of convergence.
2. The series converges only for $x=a$ (then $R=0$).
3. The series converges for all x (then $R=\infty$).

- We find the radius of convergence using the Ratio Test.
- An interval of convergence is the interval of all x 's for which the power series converges.
- You must check the endpoints $x=a \pm R$ individually to determine whether or not they are in the interval of convergence.

1. For the following series find the radius and interval of convergence.
(a) $\sum_{n=0}^{\infty} \frac{n^{4} x^{n}}{7^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{8^{n}(x+4)^{3 n}}{n^{3}+1}$
(c) $\sum_{n=1}^{\infty} \frac{(-9)^{n}(5 x-3)^{n}}{n}$
(d) $\sum_{n=1}^{\infty} \frac{(n+1)!(x-1)^{n+1}}{4^{n+1}}$
(e) $\sum_{n=0}^{\infty} \frac{(-6)^{n} x^{n}}{(3 n+1)!}$
2. Assume that it is known that the series $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ converges when $x=5$ and diverges when $x=-2$. What can be said about the convergence or divergence of the following series:
(a) $\sum_{n=0}^{\infty} c_{n}(-7)^{n}$
(b) $\sum_{n=0}^{\infty} c_{n} 5^{n}$
(c) $\sum_{n=0}^{\infty} c_{n}(-3)^{n}$
(d) $\sum_{n=0}^{\infty} c_{n} 3^{n}$
(e) $\sum_{n=0}^{\infty} c_{n}(-1)^{n}$

10.6: Representation of Functions as Power Series

- Geometric Series Formula:

$$
\frac{1}{1-x}=\sum_{n=1}^{\infty} x^{n-1}=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1 .
$$

- Term-by-term Differentiation and Integration of power series:

If $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and

$$
\begin{aligned}
& -f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
& -\int f(x) \mathrm{d} x=C+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}
\end{aligned}
$$

The radii of convergence of the power series for $f^{\prime}(x)$ and $\int f(x) \mathrm{d} x$ are both R.
3. Find a power series representation for the following functions and determine the interval of convergence.
(a) $f(x)=\frac{4}{1+x}$
(b) $f(x)=\frac{4}{2+4 x}$
(c) $f(x)=\frac{-9}{9-x^{4}}$
(d) $f(x)=\ln (3 x+5)$
(e) $f(x)=x^{5} \ln (3 x+5)$
(f) $f(x)=\frac{x^{4}}{(1-4 x)^{2}}$
(g) $f(x)=\arctan \left(16 x^{4}\right)$
4. Express the integral $\int_{-0.5}^{0} \frac{\mathrm{~d} x}{1-x^{7}}$ as a power series.

10.7: Taylor and Maclaurin Series

- The Taylor series for $f(x)$ about $x=a$:

$$
\begin{aligned}
f(x)= & \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}= \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
\end{aligned}
$$

- The Maclaurin series is the Taylor series about $x=0$ (i.e. $\mathbf{a}=0$):

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots
$$

- Known Mclaurin series and their intervals of convergence you must have memorized:

$$
\begin{align*}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} \tag{1,1}\\
=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & =1+x+x^{2}+x^{3}+\ldots \\
e^{x} & =x^{2}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \quad(-\infty, \infty) \\
\sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \quad(-\infty, \infty) \tag{-1,1}\\
\arctan x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \quad[-1,1]
\end{align*}
$$

Examples.

5. Given that function f has power series expansion (i.e. Taylor series) centered at $a=\pi$. Find this expansion and its radius of convergence if it is given that

$$
f^{(n)}(\pi)=\frac{(-1)^{n} n!}{4^{2 n+1}(2 n+1)!} .
$$

6. Find the 20th derivative of $f(x)=e^{x^{2}}$ at $x=0$.
7. Find Taylor series for $f(x)=e^{3 x}$ centered at $x=1 / 3$. What is the associated radius of convergence?
8. Find Taylor series for $f(x)=\frac{1}{x}$ centered at $x=5$. What is the associated interval of convergence?
9. Find Maclaurin series for the following functions:
(a) $f(x)=x^{3} \sin x^{5}$
(b) $f(x)=\sin ^{2} x$
(c) $x+3 x^{2}+x e^{-x}$
10. Express $\int \frac{\sin (3 x)}{x} \mathrm{~d} x$ as an infinite series.
11. Find the sum of the series:
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{4^{2 n}(2 n)!}$
(b) $\sum_{n=0}^{\infty} \frac{7^{n}}{n!}$
(c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+3}}{2 n+1}$
12. Use series to approximate the integral $\int_{0}^{0.5} x^{2} e^{-x^{2}} \mathrm{~d} x$ with error less than 10^{-3}.
