Sample problems for Test 2.

1. Find $f^{\prime}(x)$ for $f(x)=\sqrt{5-x}$ using the definition of derivative.
2. Prove that
(a) $(c f(x))^{\prime}=c f^{\prime}(x)$
(b) $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
(c) $\left(x^{n}\right)^{\prime}=n x^{n-1}$
(d) $(\cos x)^{\prime}=-\sin x$
(e) $(\sin x)^{\prime}=\cos x$
(f) $(\tan x)^{\prime}=\sec ^{2} x$
(g) $(\sec x)^{\prime}=\sec x \tan x$
3. Find the derivative $f^{\prime}(x)$ of each function $f(x)$:
(a) $f(x)=\left(x^{5}+3 x^{3}-x+10\right)\left(x^{4}-2 x^{2}+4\right)$
(b) $f(x)=\frac{x^{2}+3 x+3}{\sqrt{x}+2}$
(c) $f(x)=x+x \sqrt[3]{x^{2}}+x \sqrt{x}+\frac{1}{x \sqrt{x}}+\frac{x}{\sqrt[3]{x}}$
(d) $f(x)=\sqrt{\csc 2 x}+\tan ^{2}\left(x^{2}+1\right)$
(e) $f(x)=\sqrt{x \cos x+x}$
4. Find the equation of the tangent line to the curve $y=x \sqrt{5-x}$ at the point (1,2).
5. A particle moves on a vertical line so that its coordinate at time t is $y=t^{3}-12 t+3$, $t \geq 0$.
(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward?
(c) Find the distance that particle travels in the time interval $0 \leq t \leq 3$
6. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\tan 2 x}$
7. Find $\frac{d y}{d x}$ if $\sin (x+y)=y^{2} \tan x$
8. Find the tangent vector and parametric equations for the line tangent to the curve $\vec{r}(t)=<$ $t^{2}+2 t, t^{3}-t>$ at the point corresponding to $t=1$.
9. The vector function $\vec{r}(t)=<t, 25 t-5 t^{2}>$ represents the position of a particle at time t. Find the velocity, speed, and acceleration at $t=1$.
10. Find $y^{\prime \prime}$ if $y=x^{2} \cos 3 x$
11. Find the 54-th derivative of the function $f(x)=x \cos x$.
12. At what points on the curve $x=t^{3}+4 t, y=6 t^{2}$ is the tangent parallel to the line with the equations $x=-7 t, y=12 t-5$?
13. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $0.9 \mathrm{ft} / \mathrm{s}$, how fast is the angle between the ladder and the ground changing when the bottom of the ladder is 8 ft from the wall?
14. A water trough is 10 m long and has a cross-section in the shape of an isosceles trapezoid that is 40 cm wide at the bottom, 100 cm wide at the top, and has height 60 cm . If the trough is being filled with water at the rate of $0.1 \mathrm{~m}^{3} / \mathrm{min}$ how fast is the water level rising when the water is 40 cm deep?
15. Use differentials to find an approximate value for $(1.97)^{6}$.
16. Find the linear approximation to $f(x)=\frac{1}{1+x^{2}}$ at 1 .
