- 1. Find the area of the region bounded by $y = x^2 + 1$, $y = 3 x^2$, x = 0, and x = 2.
- 2. Find the volume of the solid obtained by rotating the region bounded by $y = x^2 1$, y = 0, x = 1, x = 2 about the x-axis.
- 3. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$, y = 0. x = 1, x = 2 about

(a) the *y*-axis

- (b) x = 4
- 4. A heavy rope, 50 ft long, weighs 0.5 lb/ft and hangs over the edge of a building 120 ft hight. How much work is done in pulling the rope to the top of the building?
- 5. A spring has a natural length of 20 cm. If a 25-N force is required to keep it stretched to a length of 30 cm, how much work is required to stretch it from 20 cm to 25 cm?
- 6. Find the average value of $f = \sin^2 x \cos x$ on $[-\pi/2, \pi/4]$.
- 7. Evaluate the integral

(a)
$$\int t^2 \cos(1-t^3) dt$$

(b)
$$\int \frac{x^2}{\sqrt{1-x}} dx$$

(c)
$$\int_0^1 x^2 e^{-x} dx$$

(d)
$$\int \sin^3 x \cos^4 x \, dx$$

(e)
$$\int_0^{\pi/8} \sin^2(2x) \cos^3(2x) \, dx$$

(f)
$$\int \sin^2 x \cos^4 x \, dx$$

(g)
$$\int_0^{\pi/4} \tan^4 x \sec^2 x \, dx$$

(h)
$$\int \tan x \sec^3 x \, dx$$

(i)
$$\int \sin 3x \cos x \, dx$$

(j)
$$\int \frac{x^2}{\sqrt{5-x^2}} dx$$

(k)
$$\int \frac{x^3}{\sqrt{x^2+4}} dx$$

(l)
$$\int \frac{dx}{\sqrt{x^2+4x-5}}$$

(m)
$$\int \frac{dx}{x^2(x^2+1)}$$

(n)
$$\int \frac{x^2+3x-1}{x-1}dx$$

(o)
$$\int_0^\infty \frac{dx}{(x+2)(x+3)}$$

(p)
$$\int_{-\infty}^1 \frac{dx}{(2x-3)^2}$$

(q)
$$\int_4^5 \frac{dx}{(5-x)^{2/5}}$$

- 8. Find the length of the curve $x(t) = 3t t^3$, $y(t) = 3t^2$, $0 \le t \le 2$.
- 9. Find the area of the surface obtained by rotating the curve $y = x^3$, $0 \le x \le 2$ about the x-axis.
- 10. Find the area of the surface obtained by rotating the curve $x = \sqrt{2y y^2}$, $0 \le y \le 1$ about the y-axis.
- 11. (a) Sketch the curve $r = 2(1 + \cos \theta)$ in polar coordinates.
 - (b) Find the length of the polar curve $r = 2(1 + \cos \theta)$.
- 12. A region D lies inside the circle $r = 3\sin\theta$ and outside the cardioid $r = 1 + \sin\theta$.
 - (a) Sketch the region D.
 - (b) Find the area of the region D.
- 13. Find the following limits

(a)
$$\lim_{n \to \infty} \frac{\sqrt{n}}{\ln n}$$

(b)
$$\lim_{n \to \infty} \frac{1 - 2n^2}{\sqrt[3]{n^6 + 1} + 2n^2}$$

(c)
$$\lim_{n \to \infty} (\sqrt{n + 1} - \sqrt{n})$$

14. Find the sum of the series

(a)
$$\sum_{n=1}^{\infty} \frac{2^{2n+1}}{3^{3n-1}}$$

(b) $\sum_{n=2}^{\infty} \frac{(-1)^n x^2}{n!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$

15. Which of the following series is convergent?

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^{5/7} + 1}$$

(b) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n}$

$$({\bf c}) \ \sum_{n=2}^\infty \frac{1}{n(\ln n)^2}$$

16. Which of the following series is absolutely convergent?

(a)
$$\sum_{n=0}^{\infty} \frac{(-3)^n}{n!}$$

(b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$
(c) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{\sqrt{n-2}}$
(d) $\sum_{n=0}^{\infty} (-1)^n \frac{2^{2n}}{3^{3n}}$

17. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$.

- 18. Find the power series representation for the function $f(x) = \ln(3 2x)$ centered at 0.
- 19. Find the Taylor series for $f(x) = xe^x$ at x = 2.
- 20. Find the Maclaurin series for $f(x) = x \sin(x^3)$.