1. Evaluate the integral
(a) $\int t^{2} \cos \left(1-t^{3}\right) d t$
(b) $\int \frac{x^{2}}{\sqrt{1-x}} d x$
(c) $\int x^{3} e^{x^{2}} d x$
2. Let \mathcal{R} be the region in the first quadrant bounded by the curves $y=x^{3}$ and $y=2 x-x^{2}$.
(a) Find the area fo \mathcal{R}
(b) Find the volume obtained by rotating \mathcal{R} about the line $x=-1$.
(c) Find the volume obtained by rotating \mathcal{R} about the line $y=2$.
3. Find the volume of the solid obtained by rotating the region bounded by $y=x$ and $y=x^{2}$ about
(a) the line $y=-1$
(b) the y-axis
(c) the line $x=4$
4. The base of solid S is the triangular region with vertices $(0,0),(2,0)$, and $(0,1)$. Cross-sections perpendicular to the x-axis are semicircles. Find the volume of S.
5. The solid S has a base in the shape of a triangle with vertices $(0,0),(0,2)$ and $(1,2)$. Cross sections perpendicular to the x-axis are squares. What is the volume ofS?
6. A cable 40 feet long weighing 6 pounds per foot is hanging off the side of a 50 foot tall building. At the bottom of the cable is a bucket of rocks weighing 100 pounds. How much work is required to pull 10 feet of the cable to the top of the building?
7. A spring has a natural length of 20 cm . If a 10 J work is required to keep it stretched to a length 25 cm , how much work is done in stretching the spring from 30 cm to 80 cm ?
8. A tank of water is 20 ft long and has a vertical cross section in a shape of an equilateral triangle with sides 2 ft long. The tank is filled with water to a depth of 18 inches. Determine the amount of work needed to pump all of the water to the top of the tank. The weight of water is $62.5 \mathrm{lb} / \mathrm{ft}^{3}$.
9. Find the average value of $f=\sin ^{2} x \cos x$ on $[-\pi / 2, \pi / 4]$.
