1. Evaluate the integral

(a)
$$\int t^2 \cos(1-t^3) dt$$

(b)
$$\int \frac{x^2}{\sqrt{1-x}} dx$$

(c)
$$\int x^3 e^{x^2} dx$$

2. Let \mathcal{R} be the region in the first quadrant bounded by the curves $y = x^3$ and $y = 2x - x^2$.

- (a) Find the area fo \mathcal{R}
- (b) Find the volume obtained by rotating \mathcal{R} about the line x = -1.
- (c) Find the volume obtained by rotating \mathcal{R} about the line y = 2.
- 3. Find the volume of the solid obtained by rotating the region bounded by y = x and $y = x^2$ about
 - (a) the line y = -1
 - (b) the *y*-axis
 - (c) the line x = 4
- 4. The base of solid S is the triangular region with vertices (0,0), (2,0), and (0,1). Cross-sections perpendicular to the x-axis are semicircles. Find the volume of S.
- 5. The solid S has a base in the shape of a triangle with vertices (0,0), (0,2) and (1,2). Cross sections perpendicular to the x-axis are squares. What is the volume of S?
- 6. A cable 40 feet long weighing 6 pounds per foot is hanging off the side of a 50 foot tall building. At the bottom of the cable is a bucket of rocks weighing 100 pounds. How much work is required to pull 10 feet of the cable to the top of the building?
- 7. A spring has a natural length of 20 cm. If a 10 J work is required to keep it stretched to a length 25 cm, how much work is done in stretching the spring from 30 cm to 80 cm?
- 8. A tank of water is 20 ft long and has a vertical cross section in a shape of an equilateral triangle with sides 2 ft long. The tank is filled with water to a depth of 18 inches. Determine the amount of work needed to pump all of the water to the top of the tank. The weight of water is 62.5 lb/ft^3 .
- 9. Find the average value of $f = \sin^2 x \cos x$ on $[-\pi/2, \pi/4]$.