1. Find the length of the curve $x(t)=3 t-t^{3}, y(t)=3 t^{2}, 0 \leq t \leq 2$.
2. Find the area of the surface obtained by rotating the curve $y=x^{3}, 0 \leq x \leq 2$ about the x-axis.
3. Find the area of the surface obtained by rotating the curve $x=\sqrt{2 y-y^{2}}, 0 \leq y \leq 1$ about the y-axis.
4. (a) Sketch the curve $r=2(1+\cos \theta)$ in polar coordinates.
(b) Find the length of the polar curve $r=2(1+\cos \theta)$.
5. Find the area of the region that lies inside both curves $r=3 \cos \theta$ and $r=3 \sin \theta$.
6. Find the following limits
a) $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\ln n}$
b) $\lim _{n \rightarrow \infty} \frac{1-2 n^{2}}{\sqrt[3]{n^{6}+1}+2 n^{2}}$
c) $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})$
d) $\lim _{n \rightarrow \infty} \frac{(-1)^{n} \sqrt{n}}{n^{2}+1}$
7. Given the n-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$ by $s_{n}=\frac{n}{2 n+1}$, find a_{4}. What is the sum of the series?
8. Find the sum of the series
a) $\sum_{n=1}^{\infty} \frac{2^{2 n+1}}{3^{3 n-1}}$
b) $\sum_{n=3}^{\infty} \frac{1}{n^{2}-4}$
9. Which of the following series is convergent?
a) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{5 / 7}+1}$
b) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$
c) $\sum_{n=1}^{\infty} n e^{-n^{2}}$
10. Approximate the sum of the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ by using the sum of first 4 terms. Estimate the error involved in this approximation.
