MATH 172 - 502

Practice Problems for Exam 3

- 1. Find the length of the curve $x(t) = 3t t^3$, $y(t) = 3t^2$, $0 \le t \le 2$.
- 2. Find the area of the surface obtained by rotating the curve $y = x^3$, $0 \le x \le 2$ about the x-axis.
- 3. Find the area of the surface obtained by rotating the curve $x = \sqrt{2y y^2}$, $0 \le y \le 1$ about the y-axis.
- 4. (a) Sketch the curve $r = 2(1 + \cos \theta)$ in polar coordinates.
 - (b) Find the length of the polar curve $r = 2(1 + \cos \theta)$.
- 5. Find the area of the region that lies inside both curves $r = 3\cos\theta$ and $r = 3\sin\theta$.
- 6. Find the following limits

a)
$$\lim_{n \to \infty} \frac{\sqrt{n}}{\ln n}$$

b)
$$\lim_{n \to \infty} \frac{1 - 2n^2}{\sqrt[3]{n^6 + 1} + 2n^2}$$

c)
$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n})$$

d)
$$\lim_{n \to \infty} \frac{(-1)^n \sqrt{n}}{n^2 + 1}$$

7. Given the *n*-th partial sum of the series $\sum_{n=1}^{\infty} a_n$ by $s_n = \frac{n}{2n+1}$, find a_4 . What is the sum of the series?

8. Find the sum of the series

a)
$$\sum_{n=1}^{\infty} \frac{2^{2n+1}}{3^{3n-1}}$$
 b) $\sum_{n=3}^{\infty} \frac{1}{n^2 - 4}$

9. Which of the following series is convergent?

a)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^{5/7} + 1}$$
 b) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n}$ c) $\sum_{n=1}^{\infty} ne^{-n^2}$

10. Approximate the sum of the series $\sum_{n=1}^{\infty} ne^{-n^2}$ by using the sum of first 4 terms. Estimate the error involved in this approximation.