\qquad
Due Tuesday, Nov. 12, 2013 at the beginning of class.
NAME (print): \qquad
No credit for unsupported answers will be given. Clearly indicate your final answer. Staple all the sheets.

1. Given the vector field $\vec{F}(x, y)=\left\langle e^{2 y}, 1+2 x e^{2 y}\right\rangle$.
(a) [3 pts.] Find a function f such that $\vec{F}=\nabla f$.
(b) [1 pts.] Use part (a) to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ if the curve C is given by the vector equation $\vec{r}(t)=<t e^{t}, 1+t>, 0 \leq t \leq 1$.
2. [3 pts.] A particle starts at the point $(-2,0)$, moves along the x-axis to $(2,0)$, and then along the semicircle $y=\sqrt{4-x^{2}}$ to the starting point. Use Green's Theorem to find the work done by the force field $\vec{F}(x, y)=<x, x^{3}+3 x y^{2}>$.
3. [3 pts.] Find the curl and the divergence of the vector field

$$
\vec{F}(x, y, z)=e^{x y z} \vec{\imath}+\sin (x-y) \vec{\jmath}-\frac{x y}{z} \vec{k}
$$

