Due Tuesday, Nov. 12, 2013 at the beginning of class.
NAME (print):
key
No credit for unsupported answers will be given. Clearly indicate your final answer. Staple all the sheets.

1. Given the vector field $\vec{F}(x, y)=\left\langle e^{2 y}, 1+2 x e^{2 y}\right\rangle$.
(a) [3 pts.] Find a function f such that $\vec{F}=\nabla f$.

$$
\nabla f=<x, i, f y>0.5
$$

$$
\frac{\partial f}{\partial y}=\frac{2 x}{} x^{2}(y)=1
$$

$$
g^{\prime}(y)=1
$$

$$
g(y)=y+c 0.5
$$

$$
f(x, y)=x e^{2 y}+y+c
$$

(b) [1 pts.] Use part (a) to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ if the curve C is given by the vector equation $\vec{r}(t)=\left\langle t e^{t}, 1+t>, 0 \leq t \leq 1\right.$.

$$
\begin{aligned}
& \text { Se } \vec{F} \cdot d \vec{r}=f(e, 2)-f(0,1) \\
& \vec{r}(1)=<4,2\rangle \quad \mid=e e^{4}+2+c-1-c \\
& \vec{r}(0)=\langle 0,1\rangle=e^{5}+10.5 \\
& f(e, 2)=e e^{4}+2+c \\
& =e^{5}+2+c \\
& f(0,1)=1+C
\end{aligned}
$$

2. [3 pts.] A particle starts at the point $(-2,0)$, moves along the x-axis to $(2,0)$, and then along the semicircle $y=\sqrt{4-x^{2}}$ to the starting point. Use Green's Theorem to find the work done by the force field $\vec{P}(x, y)=\left\langle x, x^{3}+3 x y^{2}\right\rangle$.

3. [3 pts.] Find the curl and the divergence of the vector field

$$
\begin{aligned}
& \operatorname{div} \vec{F}=\frac{\partial}{\partial x}\left(e^{x y z}\right)+\frac{\partial}{\partial y}(\sin (x-y))+\frac{\partial}{\partial z}\left(-\frac{x y}{z}\right) \\
& =y z e^{x y z}-\cos (x-y)+\frac{x y}{z^{2}} 0.25 \\
& \text { curl } \vec{F}=\left|\begin{array}{lll}
\vec{L} & \vec{\hbar} & \vec{k} \\
\partial / \partial x & \sigma / \partial y & \partial / \partial z \\
e^{x y z} & \sin (x-y) & -\frac{x y}{z}
\end{array}\right|_{0} \\
& =\vec{l}\left(\frac{\partial}{\partial y}\binom{0.25}{-\frac{x y}{z}}-\frac{\partial}{\partial z}\left(\begin{array}{c}
0.25 \\
\sin (x-y) \\
0.25
\end{array}\right)\right. \\
& -\vec{J}\left(\frac{\partial}{\partial x}\left(-\frac{x y}{z}\right)-\frac{\partial}{\partial z}\left(e^{0.25 y z}\right)\right) \\
& +\vec{k}\left(\frac{\partial}{\partial x}(\sin (x-y))-\frac{\partial}{\partial y}\left(e^{0.25 x z}\right)\right) \\
& =0.25-\frac{x}{z} \vec{l}+\left(\frac{y}{z}+x y e^{x y z}\right) \vec{f}+\left(\cos (x-y)-x z e^{x y z}\right) \vec{k}
\end{aligned}
$$

