MATH 251, Section
Due Tuesday, Dec. 3, 2013 at the beginning of class.
NAME (print): \qquad key

No credit for unsupported answers will be given. Clearly indicate your final answer. Staple all the sheets.

1. [3 pts.] Evaluate $\iint_{S} x z d S$, where S is the triangle with vertices ($1,0,0$), $(0,1,0)$, and $(0,0,1)$.

Equation of $s: x+y+z=1$

$$
\begin{aligned}
\iint_{S} x z d s= & \iint_{\infty} x z|\vec{n}| d A \\
\vec{n}= & \pm\left\langle z_{x}, z_{y},-1\right\rangle \\
& z=1-x-y
\end{aligned}
$$

projection onto

(ky) plane

$$
\begin{aligned}
& \vec{n}= \pm\langle-1,-1,-1\rangle \\
& |\vec{n}|=\sqrt{3} \\
& \iint_{S} x z d S=\sqrt{3} \int_{\infty} x(1-x-y) d A \\
& =\sqrt{3} \int_{0}^{1} \int_{0}^{1-x}\left(x-x^{2}-x y\right) d y d x
\end{aligned}
$$

$=-\sqrt{3})_{0}^{1}\left[x y-x^{2} y-\frac{x y^{2}}{2}\right]_{y=}^{y=1-x} d x=\sqrt{3} \int_{0}^{1}\left(x(1-x)-x^{2}(1-x)-\frac{x}{2}(1-x)^{2}\right.$
$\left.\left.\left.-\frac{1}{3} \int_{0}^{1}\left(\frac{x}{2}-x^{2}+\frac{x^{3}}{2}\right) d x=\sqrt{3} \frac{x^{2}}{4}\right]_{0}^{1}-\frac{\sqrt{3}}{3} \frac{x^{3}}{3}\right]_{0}^{1}+\frac{\sqrt{3} x^{4}}{8}\right]_{0}^{1}$

$$
=\left(\frac{1}{4}-\frac{1}{3}+\frac{1}{8}\right) \sqrt{3}=\frac{\sqrt{3}}{24}
$$

2. [4 pts.] Use the Stoke's Theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where

$$
\vec{F}(x, y, z)=\left\langle x^{2} y, \frac{x^{3}}{3}, x y\right\rangle
$$

and C is the curve of intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$ oriented counterclockwise as viewed from above.

$$
\oint \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{courl} l \vec{F} \cdot d \vec{S}=\iint_{\infty} \operatorname{curl} l \vec{F} \cdot \vec{n} d t
$$

S is the portion of $z=y^{2}-x^{2}$ inside the cylinder $x^{2}+y^{2}=1$.

$$
\text { carl } \vec{F} \cdot \vec{n}=2 x^{2}+2 y^{2}
$$

parameter domain $D: x^{2}+y^{2} \leq 1$

$$
\begin{aligned}
\oint \vec{F} \cdot d \overrightarrow{r^{7}} & =\iint_{\Phi}\left(2 x^{2}+2 y^{2}\right) d A \\
\quad x=r \cos \theta ; & 0 r \leqslant 1 \\
\quad \text { polar coord, } \quad y=r \sin \theta ; & 0 \leqslant \theta \leqslant
\end{aligned}
$$

$$
\begin{aligned}
=2 \int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta & \left.=2(2 \pi) \frac{r^{4}}{4}\right]_{0}^{1} \\
& =\pi
\end{aligned}
$$

$$
\begin{aligned}
& \vec{n}= \pm\left\langle z_{x}, z_{y},-1\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \vec{n} \text { is directed } \\
& \text { upward } \\
& \text { curl } \vec{F}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{t} & \vec{t} \\
0 / \partial x & \text { toy } & \partial z z \\
x^{2} y & x^{3} / 3 & x y
\end{array}\right|=\left\langle x_{1}-y, 0>\right.
\end{aligned}
$$

3. [4 pts.] Use the Divergence Theorem to calculate the flux of the vector field

$$
\vec{F}(x, y, z)=\left\langle x^{3}+y z, x^{2} y, x y^{2}\right\rangle
$$

across the surface S, where S is the surface of the solid bounded by spheres $x^{2}+y^{2}+z^{2}=4$

$$
\begin{aligned}
& \operatorname{flu} x=\iint_{S} \vec{F} \cdot d \vec{S}=\iiint_{E} \operatorname{div} \vec{F} d V=4 \iiint_{E} x^{2} d V \\
& z \operatorname{div} \vec{F}=3 x^{2}+x^{2}=4 x^{2}
\end{aligned}
$$

spherical coordinates:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x=\rho \cos \theta \sin \varphi \\
y=\rho \sin \theta \sin \varphi \\
z=\rho \cos \varphi
\end{array}\right.} \\
& 2 \leq \rho \leq 3 \\
& 0 \leq \varphi \leq \pi \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { flux }=4 \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2}^{3} \rho^{2} \cos ^{2} \theta \sin ^{2} \varphi \rho^{2} \sin \varphi d \rho d \varphi d \theta \\
& =4 \int_{0}^{2 \pi} \underbrace{\cos ^{2} \theta}_{1+\cos 2 \theta} d \theta \int_{0}^{\pi} \sin ^{3} \varphi d \varphi \int_{2}^{3} \rho^{4} d \rho \\
& \left.=4 \int_{0}^{2 \pi} \frac{1+\cos 2 \theta}{2} d \theta \int_{0}^{\pi} \sin \varphi\left(1-\cos ^{2} \varphi\right) d \varphi \frac{\rho^{5}}{5}\right]_{2}^{3} \\
& =4(\pi) \frac{1}{5}\left(3^{5}-2^{5}\right) \int_{0}^{\pi} \sin \varphi\left(1-\cos ^{2} \varphi\right) d \varphi \\
& u=\cos \varphi \\
& d u=-\sin \varphi d \varphi \quad \begin{array}{l}
0 \rightarrow 1 \\
\pi \rightarrow-1
\end{array} \\
& =-\frac{4 \pi}{5}(243-32) \int_{1}^{-1}\left(1-u^{2}\right) d u=\frac{844 \pi}{5}\left(u-\frac{u^{3}}{3}\right)_{-1}^{1} \\
& 3=\frac{3376 \pi}{15}
\end{aligned}
$$

