MATH 251, Section $506,507,508$
Thursday, Sept. 26, 2013
Due Tuesday, Oct. 1, 2013 at the beginning of class.
NAME (print): \qquad
No credit for unsupported answers will be given. Clearly indicate your final answer

1. [3 pts.] Let $z=x \tan ^{-1}(x y)$, where $x=t s$ and $y=s e^{t}$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

$$
\begin{array}{r}
\text { 1. [3 pts. Let } z=x \tan ^{-1}(x y) \text {, where } x=t s \text { and } y=s e^{t} \text {. Find } \frac{\partial x}{\partial s} \text { and } \frac{\partial z}{\partial t} . \\
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
0.5 \frac{\partial z}{\partial s}=\left(\tan ^{-1}(x y)+\frac{x y}{\partial x}=\tan ^{-1}(x y)+\frac{x y}{1+x^{2} y^{2}}\right. \\
0 . \frac{\partial z}{\partial t}=\left(\tan ^{-1}(x y)+\frac{x y}{1+x^{2} y^{2}}\right) s+\frac{x^{2}}{1+x^{2} y^{2}} e^{t} \\
\frac{\partial z}{\partial y}=\frac{x^{2}}{1+x^{2} y^{2}} \operatorname{sen} \quad 0.5 \\
0.25, \frac{\partial x}{\partial t}=s \\
\frac{\partial x}{\partial s}=t, 25 \\
\frac{\partial y}{\partial s}=e^{t}, \frac{\partial y}{\partial t}=5 e^{t} \\
0.25
\end{array}
$$

2. [3 pts.] If $y^{2} z e^{x+y}-\sin (x y z)=0$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$
\begin{align*}
& F(x, y, z)=y^{2} z e^{x+y}-\sin (x y z) \quad 0.5 \\
& \frac{\partial F}{\partial x}=y^{2} z e^{x+y}-\cos (x y z)(y z) 0.5 \\
& \frac{\partial F}{\partial y}=2 y z e^{x+y}+y^{2} z e^{x+y}-\cos (x y z)(x z) 0.5 \\
& \frac{\partial F}{\partial z}=y^{2} e^{x+y}-\cos (x y z)(x y) 0.5
\end{align*}
$$

$$
\frac{\partial z}{\partial x}=\frac{-\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}=-\frac{y^{2} z e^{x+y}-y z \cos (x y z)}{y^{2} e^{x+y}-x y \cos (x y z)}
$$

0.5

$$
0.5 \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}=-\frac{2 y z e^{x+y}+y^{2} z e^{x+y}-x z \cos (x y z)}{y^{2} e^{x+y}-x y \cos (x y z)}
$$

3. [2 pts.] Find the directional derivative of $f(x, y)=2 \sqrt{x}-y^{2}$ in the direction of

$$
\mathcal{D}_{u}{ }^{0.5} \stackrel{0.5}{=} \nabla f .
$$

$$
\begin{gathered}
\vec{v}=\langle 3,-4\rangle . \\
|\vec{v}|=\sqrt{9+16}=\sqrt{25}=5 \cdot 0.25 \\
\vec{u}=\frac{\vec{v}}{|\vec{v}|}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle 0.25 \\
\nabla f=\left\langle 2 \frac{1}{2} x^{-1 / 2},-2 y\right\rangle=\left\langle x^{0.51 / 2},-2 y^{25}\right\rangle \\
\nabla f \cdot \vec{u}=\left\langle x^{-1 / 2},-2 y\right\rangle \cdot\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle \\
=\frac{3}{5} x^{-1 / 2}-\frac{8}{5} y 0.5
\end{gathered}
$$

4. [2 pts.] Find an equation of the tangent plane to $x^{2}-2 y^{2}-3 z^{2}+x y z=4$ at the point (3, -2, -1).

$$
\begin{aligned}
&F,-2,-1) . \\
& F(x, y, z)=x^{2}-2 y^{2}-3 z^{2}+x y z-4 \quad 0.25 \\
& \nabla F=\left\langle 20.25 z,-4 y+x z,-6 z^{2}+x y\right\rangle \\
& \nabla F(3,-2,-1)=\langle b+2,8-3,6-6\rangle \\
&=\langle 8,5,0\rangle 0.5
\end{aligned}
$$

An equation of the tangent plane is

$$
8(x-3)+5(y+2)+0(z+1)=0
$$

or

$$
8 x+5 y-14=0
$$

