MATH 251, Section	Quiz#8 (Sections 13.8, 13.10
Thursday, Oct. 24, 2013 Due Thursday, Oct. 31, 2013 at the beginning of class.	Dr. M. Vorobets
NAME (print):	

No credit for unsupported answers will be given. Clearly indicate your final answer. Staple all the sheets.

1. [6 pts.] Evaluate $\iiint_E (x+2y)dV$ if E is bounded by the cylinder $x=y^2$ and the planes z=0 and x+z=1.

2. [7 pts.] Use cylindrical coordinates to evaluate $\iiint_E xz \, dV$, where E is bounded by the planes $z=0, \, z=y$, and the cylinder $x^2+y^2=1$ in the half-space $y\geq 0$.

3. [7 pts.] Use spherical coordinates to evaluate $\iiint_E xe^{(x^2+y^2+z^2)^2} dV$, where E is the solid that lies between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$ in the first octant.