Due Thursday, Oct. 31, 2013 at the beginning of class.
NAME (print):
No credit for unsupported answers will be given. Clearly indicate your final answer. Staple all the sheets.

1. [6 pts.] Evaluate $\iiint_{E}(x+2 y) d V$ if E is bounded by the cylinder $x=y^{2}$ and the planes $z=0$ and $x+z=1$.
2. [7 pts.] Use cylindrical coordinates to evaluate $\iiint_{E} x z d V$, where E is bounded by the planes $z=0, z=y$, and the cylinder $x^{2}+y^{2}=1$ in the half-space $y \geq 0$.
3. [7 pts.] Use spherical coordinates to evaluate $\iiint_{E} x e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d V$, where E is the solid that lies between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.
