## Chapter 13. Multiple integrals.

Section 13.8 Triple integrals.
We want to define the triple integrals for functions of three variables.
Let $f$ is definfed on a rectangular bo


$$
\begin{gathered}
a=x_{0}<x_{1}<\ldots<x_{m}=l \\
c=y_{0}<y_{1}<\ldots<y_{n}=m \\
r=z_{0}<z_{1}<\ldots<z_{k}=n
\end{gathered}
$$

The planes through these partition points parallel to coordinate planes divide the box $B$ into $l m n$ sub-boxes

$$
B_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{k-1}, z_{k}\right]
$$

The volume of $B_{i j k}$ is

$$
\Delta V_{i j k}=\Delta x_{i} \Delta y_{j} \Delta z_{k}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}, \Delta y_{j}=y_{j}-y_{j-1}$, and $\Delta z_{k}=z_{k}-z_{k-1}$.
Then we form the triple Riemann sum

$$
\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k}
$$

where $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \in B_{i j k}$. We define the norm $\|P\|$ of the partition $P$ to be the length of the longest diadgonal of all the boxes $B_{i j k}$.
Definition. The triple integral of $f$ over the box $B$ is

$$
\iiint_{B} f(x, y, z) d V=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k}
$$

if this limit exists.
Fubini's Theorem for triple integrals. If $f$ is continuous on the rectangular box $B=[a, b] \times$ $[c, d] \times[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

There are five other possible orders in which we can integrate.
Example 1. Evaluate the integral $\iiint_{E}\left(x^{2}+y z\right) d V$, where

$$
\begin{aligned}
& I=\int_{-1}^{1} \int_{-3}^{0} \int_{0}^{2}\left(x^{2}+y z\right) d x d y d z=\left.\int_{-1}^{1} \int_{-3}^{0}\left(\frac{x^{3}}{3}+x y z\right)\right|_{x=0} ^{x=2} d y d z \\
= & \int_{-1}^{1} \int_{-3}^{0}\left(\frac{8}{3}+2 y z\right) d y d z=\left.\int_{-1}^{1}\left(\frac{8}{3} y+\frac{2 y^{2}}{\not x} z\right)\right|_{y=-3} ^{y=0} d z \\
= & \int_{-1}^{1}(8-9 z) d z=\left.\left(8 z-\frac{9 z^{2}}{2}\right)\right|_{-1} ^{1}=8(2)=16 .
\end{aligned}
$$

Now we define the triple integral over a general bounded region $E$ in three-dimensional space.

A solid region $E$ is said to be of type 1 if it lies between the graphs of two continuous functions of $x$ and $y$, that is,

$$
E=\left\{(x, y, z) \mid(x, y) \in D, \varphi_{1}(x, y) \leq z \leq \varphi_{2}(x, y)\right\}
$$

where $D$ is the projection of $E$ onto the $x y$-plane.

Then


Example 2. Evaluate $\iiint_{E} x d V$, where $E$ is bounded by planes $x=0, y=0, z=0$, and $3 x+2 y+z=6$.


$$
\begin{aligned}
& \text { SSS } x d V \\
& =\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} \int_{0}^{6-3 x-2 y} x d z d y d x \\
& =\left.\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} x\right|_{z=0} ^{z=6-3 x-2 y} d y d x \\
& =\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x}\left[6 x-3 x^{2}-2 x y\right] d y d x \\
& =\int_{0}^{2}\left[6 x y-3 x^{2} y-2 x y^{2}\right]_{y=0}^{y}=3-\frac{3 x}{\frac{3}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2}\left[6 x\left(3-\frac{3}{2} x\right)-3 x^{2}\left(3-\frac{3}{2} x\right)-x\left(3-\frac{3}{2} x\right)^{2}\right] d x \\
& =\int_{0}^{2}\left[18 x-9 x^{2}-9 x^{2}+\frac{9}{2} x-9 x\left(1-x+\frac{1}{4} x^{2}\right)\right] d x \\
& =\int_{0}^{2}\left[18 x-18 x^{2}+\frac{9}{2} x-9 x+9 x^{2}-\frac{9}{4} x^{3}\right] d x \\
& =\int_{0}^{2}\left[\frac{27}{2} x-9 x^{2}-\frac{9}{4} x^{3}\right] d x=6\left[\frac{27}{4} x^{2}-\frac{9 x^{3}}{3}-\frac{9}{4} \frac{x^{3}}{3}\right]_{0}^{2} \\
& =\left[\frac{27}{4} 4-3(8)-\frac{3}{4}(8)\right]=27-24-6=-3 .
\end{aligned}
$$

A solid region $E$ is of type 2 if it is of the form

$$
E=\left\{(x, y, z) \mid(y, z) \in D, \psi_{1}(y, z) \leq x \leq \psi_{2}(y, z)\right\}
$$

where $D$ is the projection of $E$ onto the $y z$-plane.

Then


$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{\psi_{1}(y, z)}^{\psi_{2}(y, z)} f(x, y, z) d x\right] d A
$$

A solid region $E$ is of type 3 if it is of the form

$$
E=\left\{(x, y, z) \mid(x, z) \in D, \chi_{1}(x, z) \leq x \leq \chi_{2}(x, z)\right\}
$$

where $D$ is the projection of $E$ onto the $x z$-plane.

Then


$$
\iiint_{E}^{\infty} f(x, y, z) d V=\iint_{D}\left[\int_{\chi_{1}(x, z)}^{\chi_{2}(x, z)} f(x, y, z) d y\right] d A
$$

## Applications of triple integrals.

$$
V(E)=\iiint_{E} d V
$$

Example 3. Find the volume of the solid bounded by the elliptic cylinder $4 x^{2}+z^{2}=4$ and the planes $y=0$ and $x+z=1$.
xzplane.

$$
y=z+2 .
$$

$x+z=1$,

$$
\begin{aligned}
& y-z=2 \\
& 4 x^{2}+z^{2}=4 \\
& y \Rightarrow y-z=2 \\
& y=0 \rightarrow z=-2
\end{aligned}
$$




$$
0 \leq y \leq y_{1}-z+2,
$$

(xz)-plane

$$
\begin{aligned}
& (\rightarrow y) \quad-1 \leq x \leq 1 \\
& -\sqrt{4-4 x^{2}} \leq z \leq \sqrt{4-4 x^{2}} \\
& V=\iiint_{E} d V=\int_{-1}^{1} \int_{-\sqrt{4-4 x^{2}}}^{\sqrt{4-4 x^{2}}} \int_{0}^{z+2} d y d z d x
\end{aligned}
$$



If the density function of a solid object that occupies the region $E$ is $\rho(x, y, z)$ in units of mass per unit volume, at any given point $(x, y, z)$, then its mass is

$$
m=\iiint_{E} \rho(x, y, z) d V
$$

and its moments about the three coordinate planes are

$$
M_{y z}=\iiint_{E} x \rho(x, y, z) d V, \quad M_{x z}=\iiint_{E} y \rho(x, y, z) d V, \quad M_{x y}=\iiint_{E} z \rho(x, y, z) d V
$$

The center of mass is located at the point $(\bar{x}, \bar{y}, \bar{z})$ where

$$
\bar{x}=\frac{M_{y z}}{m}=\frac{\iiint_{E} x \rho(x, y, z) d V}{\iiint_{E} \rho(x, y, z) d V}, \quad \bar{y}=\frac{M_{x z}}{m}=\frac{\iiint_{E} y \rho(x, y, z) d V}{\iiint_{E} \rho(x, y, z) d V}, \quad \bar{z}=\frac{M_{x y}}{m}=\frac{\iiint_{E} z \rho(x, y, z) d V}{\iiint_{E} \rho(x, y, z) d V}
$$

Example 4. Find the center of mass of a solid $E$ with density $\rho(x, y, z)=x$, where $E$ is bounded by the paraboloid $x=4 y^{2}+4 z^{2}$ and the plane $x=4$.


$$
\begin{aligned}
& \bar{x}=\frac{\iiint_{E} x \rho d V}{\iiint \rho d V} ; \bar{y}=\frac{\iiint_{E} y \rho d V}{\iiint_{E} \rho d V} \\
& \iiint_{E} \rho d V=\iint\left(\int^{4} x d x\right) d A \\
& =\iint_{2}\left[8-\frac{\left(4 y^{2}+4 z^{2}\right)^{2}}{2}\right] d A \\
& D
\end{aligned}
$$

intersection:

$$
\begin{aligned}
& 4 y^{2}+4 z^{2}= \\
& y^{2}+z^{2}=1
\end{aligned}
$$

