Suppose $f$ is a function of three variables whose domain include a surface $S$. We divide $S$ into patches $S_{i j}$ with area $\Delta S_{i j}$. We evaluate $f$ at a point $P_{i j}^{*}$ in each patch, multiply by the area $\Delta S_{i j}$, and form the sum

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \Delta S_{i j}
$$

We define the surface integral of $f$ over the surface $S$ as

$$
\iint_{S} f(x, y, z) d S=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \Delta S_{i j}
$$

If the surface $S$ is given by an equation $z=z(x, y),(x, y) \in D$, then

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, \boldsymbol{Z}(x, y)) \sqrt{\left[\frac{\partial \mathbf{z}}{\partial x}\right]^{2}+\left[\frac{\partial \mathbf{z}}{\partial y}\right]^{2}+1} d A
$$

If the surface $S$ is given by vector function $\vec{r}(u, v)=x(u, v) \vec{\imath}+y(u, v) \vec{\jmath}+z(u, v) \vec{k},(u, v) \in D$, then

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$

where

$$
\vec{r}_{u}=\frac{\partial x}{\partial u} \vec{\imath}+\frac{\partial y}{\partial u} \vec{\jmath}+\frac{\partial z}{\partial u} \vec{k} \quad \vec{r}_{v}=\frac{\partial x}{\partial v} \vec{\imath}+\frac{\partial y}{\partial v} \vec{\jmath}+\frac{\partial z}{\partial v} \vec{k}
$$

Example 1.

1. Evaluate $\iint_{S} y d S$, where $S$ is the part of the plane $3 x+2 y+z=6$ that lies in the first octant


Title : Nov 14-3:06 PM (Page 1 of 8 )
2. Evaluate $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$, if $S$ is given by vector equation $\vec{r}(u, v)=u \cos v \vec{\imath}+u \sin v \vec{\jmath}+v \vec{k}$, $\phi=\{0 \leq u \leq 1,0 \leq v \leq \pi\}$-parameter domain

$$
\begin{aligned}
& \iint_{S} \sqrt{1+x^{2}+y^{2}} d S=\iint_{\infty} \frac{\sqrt{1+u^{2} \cos ^{2} v+u^{2} \sin ^{2} v}}{1+u^{2}}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A \\
& \vec{r}_{u}=\langle\cos v, \sin v, 0\rangle \\
& \vec{r}_{v}=\langle-u \sin v, u \cos v, 1\rangle \\
& \vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{F} & \vec{k} \\
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & 1
\end{array}\right|=\vec{L}(\sin v) \vec{j}(\cos v) \\
& =\left\langle\sin v_{1}-\cos v_{1} u\right\rangle \\
& \left|\vec{r}_{u} \times \vec{r}_{v}\right|=\sqrt{\sin ^{2} v+\cos ^{2} v+u^{2}} \\
& =\sqrt{1+4^{2}} \\
& \iint_{S} \sqrt{1+x^{2}+y^{2}} d S=\int_{0}^{1} \int_{0}^{\pi} \sqrt{1+u^{2}} \sqrt{1+u^{2}} d v d u \\
& =\pi \int_{0}^{1}\left(1+u^{2}\right) d u \\
& =\pi\left(u+\frac{u^{3}}{3}\right)_{0}^{1} \\
& =\frac{4 \pi}{3}
\end{aligned}
$$



Title : Nov 14-3:04 PM (Page 3 of 8)

If a thin sheet has the shape of a surface $S$ and the density at the point $(x, y, z)$ is $\rho(x, y, z)$, then the total mass of the sheet is

$$
m=\iint_{S} \rho(x, y, z) d S
$$

and the center of mass is $(\bar{x}, \bar{y}, \bar{z})$, where

$$
\begin{array}{|l|l|l|}
\hline \bar{x}=\frac{1}{m} \iint_{S} x \rho(x, y, z) d S & \bar{y}=\frac{1}{m} \iint_{S} y \rho(x, y, z) d S & \bar{z}=\frac{1}{m} \iint_{S} z \rho(x, y, z) d S \\
\hline
\end{array}
$$

Oriented surfaces.
Let us consider a surface $S$ that has a tangent plane at every point $(x, y, z)$ on $S$ (except at any boundary point).


$$
\overrightarrow{n_{1}}=-\overrightarrow{n_{2}}
$$

There are two unit normal vectors $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}=-\overrightarrow{n_{1}}$ at $(x, y, z)$. If it is possible to chose a unit normal vector $\vec{n}$ at every such point $(x, y, z)$ so that $\vec{n}$ varies continuously over $S$, then $S$ is called an oriented surface and the given choice of $\vec{n}$ provides $S$ with an orientation. There are two possible orientations for any orientable surface.

For a surface $z=\mathbf{z}(x, y)$ the orientation is given by the unit normal vector

$$
\vec{n}=\frac{-\frac{z}{\partial x} \vec{i}-\frac{\mathbf{z}_{j}}{\partial y}+\vec{k}}{\sqrt{\left[\frac{z}{\partial x}\right]^{2}+\left[\frac{z_{2}}{\partial y}\right]^{2}+1}} \quad \begin{aligned}
& \left.\vec{n}= \pm<z_{x}, z_{y},-1\right\rangle \\
& \text { if } \vec{n} \text { is directed } \\
& \begin{array}{l}
\text { uproard, then }
\end{array} \\
& \vec{n}=-\left\langle z_{x}, z_{y},-1\right\rangle
\end{aligned}
$$

Since the $\vec{k}$-component is positive, this gives the upward orientation of the surface.
If $S$ is a smooth orientable sufce given in parametric form by a vector function $\vec{r}(u, v)$, then its orientation is given by a unit normal vector

$$
\vec{n}= \pm \vec{r}_{u} \times \vec{r}_{v}
$$

$$
\vec{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}
$$

For a closed surface, the positive orientation is the one for which the normal vectors point outward from $S$, the inward-pointing normals give the negative orientation.

Surface integrals of vector fields.
Definition. If $\vec{F}$ is a continuous vector-field defined on an oriented surface $S$ with normal vector $\vec{n}$, then the surface integral of $F$ over $S$ is

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{D} \vec{F} \cdot \vec{n} d \vec{A}
$$

This integral is also called the flux of $\vec{F}$ across $S$
If $\vec{F}=<P(x, y, z), Q(x, y, z), R(x, y, z)>$ and the surface $S$ is given by an equation $z=g(x, y)$ $(x, y) \in D$, then

$$
\vec{n}=\frac{-\frac{\partial g}{\partial x} \vec{\imath}-\frac{\partial g}{\partial y} \vec{\jmath}+\vec{k}}{\sqrt{\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial y}\right]^{2}+1}}
$$

and

$$
\iint_{S} \vec{F} \cdot d S=\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{D}(P \vec{\imath}+Q \vec{\jmath}+R \vec{k}) \cdot \frac{-\frac{\partial g}{\partial x} \vec{\imath}-\frac{\partial g}{\partial y} \vec{\jmath}+\vec{k}}{\sqrt{\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial y}\right]^{2}+1}} \sqrt{\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial y}\right]^{2}+1} d A
$$

or

$$
\iint_{S} \vec{F} \cdot d S=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A
$$

If the surface $S$ is given by vector function $\vec{r}(u, v)=x(u, v) \vec{\imath}+y(u, v) \vec{\jmath}+z(u, v) \vec{k},(u, v) \in D$, then

$$
\vec{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}
$$

and

$$
\iint_{S} \vec{F} \cdot d S=\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{D} \vec{F} \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d A
$$

Title : Nov 14-3:05 PM (Page 6 of 8)

$$
=\left\langle x^{2} y,-3 x y^{2}, 4 y^{3}\right\rangle
$$

Example 2. Find the flux of the vector field $\vec{F}=x^{2} y \vec{\imath}-3 x y^{2} \vec{\jmath}+4 y^{3} \vec{k}$ across the surface $S$, if $S$ is the part of the elliptic paraboloid $z=x^{2}+y^{2}-9$ that lies below the rectangle $0 \leq x \leq 2,0 \leq y \leq 1$ and has downward orientation.


$$
f \ln x=\iint_{S} \vec{F} \cdot d \vec{s}=\iint_{\infty} \vec{F} \cdot \vec{n} d A
$$

$$
\vec{n}= \pm\left\langle z_{x}, z_{y},-1\right\rangle
$$

$$
=\oplus<2 x, 2 y,-1>
$$

$$
=\left\langle 2 x_{1} 2 y_{1}-1\right\rangle
$$

$$
\vec{F} \cdot \vec{n}=\left\langle x^{2} y,-3 x y^{2}, 4 y^{3}\right\rangle \cdot\left\langle 2 x, 2 y_{1}-1\right\rangle
$$

$$
=2 x^{3} y-6 x y^{3}-4 y^{3}
$$

$$
f l e x=\int_{0}^{2} \int_{0}^{1}\left(2 x^{3} y-6 x y^{3}-4 y^{3}\right) d y d x
$$

$$
=\int_{0}^{2}\left[x^{3} y^{2}-\frac{6 x y^{4}}{4}-y^{4}\right]_{y=0}^{y=1} d x
$$

$$
=\int_{0}^{2}\left[x^{3}-\frac{3}{2} x-1\right] d x
$$

$$
=\left[\frac{x^{4}}{4}-\frac{3}{2} \frac{x^{2}}{2}-x\right]_{0}^{2}
$$

$$
=4-3-2
$$

$$
=-1
$$



Title: Nov 14-3:05 PM (Page 8 of 8)

