Chapter 12. Vectors and the geometry of space Section 12.1 Three-dimensional coordinate system

3D Space.

In order to represent points in space, we first choose a fixed point O (the origin) and tree directed lines through O that are perpendicular to each other, called the **coordinate axes** and labeled the x-axis, y-axis, and z-axis. Usually we think of the x and y-axes as being horizontal and z-axis as being vertical.

The direction of z-axis is determined by the **right-hand rule**: if your index finger points in the positive direction of the x-axis, middle finger points in the positive direction of the y-axis, then your thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three **coordinate planes**. The xy-plane contains the x- and yaxes and its equation is z = 0, the xz-plane contains the x- and z-axes and its equation is y = 0, The yz-plane contains the y- and z-axes and its equation is x = 0. These three coordinate planes divide space into eight parts called **octants**. The **first octant** is determined by positive axes.

Take a point P in space, let a be directed distance from yz-plane to P, b be directed distance from xz-plane to P, and c be directed distance from xy-plane to P. We represent the point P by the ordered triple (a, b, c) of real numbers, and we call a, b, and c the **coordinates** of P. The point P(a, b, c) determine a rectangular box. If we drop a perpendicular from P to the xy-plane, we get a point Q(a, b, 0) called the **projection** of P on the xy-plane. Similarly, R(0, b, c) and S(a, 0, c) are the projections of P on the yz-plane and xz-plane, respectively.

The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3 = \{(x, y, z) | x, y, z \in \mathbb{R}\}$ is the set of all ordered triplets of real numbers. We have given a one-to-one correspondence between points P in space and ordered triplets (a, b, c) in \mathbb{R}^3 . It is called a **tree-dimensional rectangular coordinate system**.

Example 1. Sketch the points (1,3,5), (-2,-1,3), (0,2,-5) on a single set of coordinate axes.

Example 2. Draw a rectangular box with the origin and (2, 4, 5) as opposite vertices and with its faces parallel to coordinate planes. Label all vertices of the box.

Surfaces.

In 3D analytic geometry, an equation in x, y and z represents a **surface** in \mathbb{R}^3 . **Example 3.** What surfaces in \mathbb{R}^3 represented by the following equations? (a) z = -6

(b) x + y = 1

(c) $y^2 + z^2 = 1$

Distance and Spheres.

The distance formula in three dimensions. The distance $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

The **midpoint** of the line segment from $P_1(x_1, y_1, z_1)$ to $P_2(x_2, y_2, z_2)$ is

$$P_M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

Example 4. Find the length of the sides and medians of a triangle with vertices A(2, -1, 0), B(4, 1, 1), C(4, -5, 4).

Equation of a sphere of radius R and center C(a, b, c) is

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = R^{2}$$

Example 5. Find an equation of a sphere that has center C(-1, 2, 4) and passes through the point (-1, 1, -2).

Example 6. Show that the equation

$$x^2 + y^2 + z^2 + 8x - 6y + 2z + 17 = 0$$

represents a sphere. Find its center and radius.