Chapter 12. Vectors and the geometry of space

Section 12.1 Three-dimensional coordinate system

3D Space.

In order to represent points in space, we first choose a fixed point O (the origin) and tree directed lines through O that are perpendicular to each other, called the coordinate axes and labeled the x-axis, y-axis, and z-axis. Usually we think of the x and y-axes as being horizontal and z-axis as being vertical.

The direction of z-axis is determined by the right-hand rule: if your index finger points in the positive direction of the x-axis, middle finger points in the positive direction of the y-axis, then your thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three coordinate planes. The $x y$-plane contains the x - and y axes and its equation is $z=0$, the $x z$-plane contains the x - and z-axes and its equation is $y=0$, The $y z$-plane contains the y - and z-axes and its equation is $x=0$. These three coordinate planes divide space into eight parts called octants. The first octant is determined by positive axes.

Take a point P in space, let a be directed distance from $y z$-plane to P, b be directed distance from $x z$-plane to P, and c be directed distance from $x y$-plane to P. We represent the point P by the ordered triple (a, b, c) of real numbers, and we call a, b, and c the coordinates of P. The point $P(a, b, c)$ determine a rectangular box. If we drop a perpendicular from P to the $x y$-plane, we get a point $Q(a, b, 0)$ called the projection of P on the $x y$-plane. Similarly, $R(0, b, c)$ and $S(a, 0, c)$ are the projections of P on the $y z$-plane and $x z$-plane, respectively.

The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R}=\mathbb{R}^{3}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ is the set of all ordered triplets of real numbers. We have given a one-to-one correspondence between points P in space and ordered triplets (a, b, c) in \mathbb{R}^{3}. It is called a tree-dimensional rectangular coordinate system.

Example 1. Sketch the points $(1,3,5),(-2,-1,3),(0,2,-5)$ on a single set of coordinate axes.

Example 2. Draw a rectangular box with the origin and $(2,4,5)$ as opposite vertices and with its faces parallel to coordinate planes. Label all vertices of the box.

Surfaces.

In 3 D analytic geometry, an equation in x, y and z represents a surface in \mathbb{R}^{3}.
Example 3. What surfaces in \mathbb{R}^{3} represented by the following equations?
(a) $z=-6$
(b) $x+y=1$
(c) $y^{2}+z^{2}=1$

Distance and Spheres.

The distance formula in three dimensions. The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

The midpoint of the line segment from $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
P_{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Example 4. Find the length of the sides and medians of a triangle with vertices $A(2,-1,0), B(4,1,1)$, $C(4,-5,4)$.

Equation of a sphere of radius R and center $C(a, b, c)$ is

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2}
$$

Example 5. Find an equation of a sphere that has center $C(-1,2,4)$ and passes through the point $(-1,1,-2)$.

Example 6. Show that the equation

$$
x^{2}+y^{2}+z^{2}+8 x-6 y+2 z+17=0
$$

represents a sphere. Find its center and radius.

