The term **vector** indicates a quantity that has both direction and magnitude. A vector is represented by an arrow or a directed line segment.



If a particle moves from a point A to a point B, then the corresponding displacement vector **a** has **initial point** A and **terminal point** B and we write  $\mathbf{a} = \overrightarrow{AB}$ . The directed line segment  $\overrightarrow{AB}$  is a **representation** of the vector **a**.

Two vectors that have the same length and direction are called **equivalent** or **equal** even if they have different initial and terminal points. Since |AB| = |CD| add both segments have the same direction,  $\mathbf{a} = \mathbf{b}$ .

The only vector with length 0 is the **zero vector 0**. This vector is the only vector with no specific direction.

#### Vector addition.

If two vectors  $\mathbf{a}$  and  $\mathbf{b}$  positioned so the initial point of  $\mathbf{b}$  is at the terminal point of  $\mathbf{a}$ , then the sum  $\mathbf{a} + \mathbf{b}$  is the vector from the initial point of  $\mathbf{a}$  to the terminal point of  $\mathbf{b}$ .



### Scalar multiplication.

If c is a scalar and **a** is a vector, then  $c\mathbf{a}$  is a vector whose length is |c| times the length of **a** and has the same direction as **a** (c > 0) or the opposite direction to **a** (c < 0). If either c = 0 or  $\mathbf{a} = \mathbf{0}$ , then  $c\mathbf{a} = \mathbf{0}$ .



Two vectors **a** and **b** are called **parallel** if  $\mathbf{b} = c\mathbf{a}$  for some scalar *c*. Vector difference.  $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-1)\mathbf{b}$ 



The magnitude (length)  $|\mathbf{a}|$  of  $\mathbf{a}$  is the length of any its representation.

A unit vector is a vector whose length is 1.

A vector  $\mathbf{u} = \frac{1}{|\mathbf{a}|}\mathbf{a}$  is a unit vector in the direction of  $\mathbf{a}$ .

# **Properties of vectors**

If  $\mathbf{a}$ ,  $\mathbf{b}$ , and  $\mathbf{c}$  are vectors and k and m are scalars, then

1.  $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ 2.  $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ 3.  $\mathbf{a} + \mathbf{0} = \mathbf{a}$ 4.  $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$ 5.  $k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}$ 6.  $(k + m)\mathbf{a} = k\mathbf{a} + m\mathbf{a}$ 7.  $(km)\mathbf{a} = k(m\mathbf{a})$ 8.  $1\mathbf{a} = \mathbf{a}$ 

Components.

## 2D

A two-dimensional vector is an ordered pair  $\mathbf{a} = \langle a_1, a_2 \rangle$  of real numbers. The numbers  $a_1$  and  $a_2$  are called the **components** of  $\mathbf{a}$ .

A representation of the vector  $\mathbf{a} = \langle a_1, a_2 \rangle$  is a directed line segment  $\overrightarrow{AB}$  from any point A(x, y) to the point  $B(x + a_1, y + a_2)$ .

A particular representation of  $\mathbf{a} = \langle a_1, a_2 \rangle$  is the directed line segment  $\overrightarrow{OP}$  from the origin to the point  $P(a_1, a_2)$ , and  $\mathbf{a} = \langle a_1, a_2 \rangle$  is called the **position** vector of the point  $P(a_1, a_2)$ .



If  $A(x_1, y_1)$  and  $B(x_2, y_2)$ , then

$$AB = < x_2 - x_1, y_2 - y_1 >$$

 $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$ 

# 3D

A tree-dimensional vector is an ordered triple  $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$  of real numbers. The numbers  $a_1, a_2$ , and  $a_3$  are called the **components** of  $\mathbf{a}$ .

A representation of the vector  $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$  is a directed line segment  $\overrightarrow{AB}$  from any point A(x, y, z) to the point  $B(x + a_1, y + a_2, z + a_3)$ .

A particular representation of  $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$  is the directed line segment  $\vec{OP}$  from the origin to the point  $P(a_1, a_2, a_3)$ , and  $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$  is called the **position vector** of the point  $P(a_1, a_2, a_3)$ .



If 
$$A(x_1, y_1, z_1)$$
 and  $B(x_2, y_2, z_2)$ , then

$$\overrightarrow{AB} = < x_2 - x_1, y_2 - y_1, z_2 - z_1 >$$

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

# 2D

 $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$ 

 $c\mathbf{a} = \langle ca_1, ca_2 \rangle$ 

$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$

$$i = < 1, 0 >, j = < 0, 1 >.$$

$$\mathbf{a} = \langle a_1, a_2 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j}$$



 $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$  $c\mathbf{a} = \langle ca_1, ca_2, ca_3 \rangle$ 

$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$$

 $\mathbf{i} = <1, 0, 0>, \, \mathbf{j} = <0, 1, 0>, \, \mathbf{k} = <0, 0, 1>$ 

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{i} + a_3 \mathbf{k}$$



# **Example 1.** Find $|2\mathbf{a} - 5\mathbf{b}|$ if

1.  $\mathbf{a} = < -1, 2 >, \mathbf{b} = < -2, -1 >$ 

2.  $\mathbf{a} = < 3, -1, 2 >, \mathbf{b} = < 4, 2, -1 >$ 

3D

**Example 2.** Find the unit vector in the direction of the given vector.

1. a = 5i - 3j

2.  $\mathbf{b} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ .