The term vector indicates a quantity that has both direction and magnitude. A vector is represented by an arrow or a directed line segment.

If a particle moves from a point A to a point B, then the corresponding displacement vector a has initial point A and terminal point B and we write $\mathbf{a}=\overrightarrow{A B}$. The directed line segment $\overrightarrow{A B}$ is a representation of the vector \mathbf{a}.

Two vectors that have the same length and direction are called equivalent or equal even if they have different initial and terminal points. Since $|A B|=|C D|$ adb both segments have the same direction, $\mathbf{a}=\mathbf{b}$.

The only vector with length 0 is the zero vector 0 . This vector is the only vector with no specific direction.

Vector addition.

If two vectors \mathbf{a} and \mathbf{b} positioned so the initial point of \mathbf{b} is at the terminal point of \mathbf{a}, then the sum $\mathbf{a}+\mathbf{b}$ is the vector from the initial point of \mathbf{a} to the terminal point of \mathbf{b}.

Triangle Law

Parallelogram Law

Scalar multiplication.

If c is a scalar and \mathbf{a} is a vector, then $c \mathbf{a}$ is a vector whose length is $|c|$ times the length of a and has the same direction as $\mathbf{a}(c>0)$ or the opposite direction to $\mathbf{a}(c<0)$. If either $c=0$ or $\mathbf{a}=\mathbf{0}$, then $c \mathbf{a}=\mathbf{0}$.

Two vectors \mathbf{a} and \mathbf{b} are called parallel if $\mathbf{b}=c \mathbf{a}$ for some scalar c. Vector difference. $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-1) \mathbf{b}$

The magnitude (length) $|\mathbf{a}|$ of \mathbf{a} is the length of any its representation.

A unit vector is a vector whose length is 1.

A vector $\mathbf{u}=\frac{1}{|\mathbf{a}|} \mathbf{a}$ is a unit vector in the direction of \mathbf{a}.

Properties of vectors

If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and k and m are scalars, then

1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
2. $\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$
3. $\mathbf{a}+\mathbf{0}=\mathbf{a}$
4. $\mathbf{a}+(-\mathbf{a})=\mathbf{0}$
5. $k(\mathbf{a}+\mathbf{b})=k \mathbf{a}+k \mathbf{b}$
6. $(k+m) \mathbf{a}=k \mathbf{a}+m \mathbf{a}$
7. $(k m) \mathbf{a}=k(m \mathbf{a})$
8. $1 \mathbf{a}=\mathbf{a}$

Components.

2D

A two-dimensional vector is an ordered pair
$\mathbf{a}=<a_{1}, a_{2}>$ of real numbers. The numbers a_{1} and a_{2} are called the components of a.

A representation of the vector $\mathbf{a}=<a_{1}, a_{2}>$ is a directed line segment $\overrightarrow{A B}$ from any point $A(x, y)$ to the point $B\left(x+a_{1}, y+a_{2}\right)$.

A particular representation of $\mathbf{a}=<a_{1}, a_{2}>$ is the directed line segment $\overrightarrow{O P}$ from the origin to the point $P\left(a_{1}, a_{2}\right)$, and $\mathbf{a}=<a_{1}, a_{2}>$ is called the position vector of the point $P\left(a_{1}, a_{2}\right)$.

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then

$$
\overrightarrow{A B}=<x_{2}-x_{1}, y_{2}-y_{1}>
$$

$|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}$

3D
A tree-dimensional vector is an ordered triple $\mathbf{a}=<a_{1}, a_{2}, a_{3}>$ of real numbers. The numbers a_{1}, a_{2}, and a_{3} are called the components of \mathbf{a}.

A representation of the vector $\mathbf{a}=<a_{1}, a_{2}, a_{3}>$ is a directed line segment $\overrightarrow{A B}$ from any point $A(x, y, z)$ to the point $B\left(x+a_{1}, y+a_{2}, z+a_{3}\right)$.

A particular representation of $\mathbf{a}=<a_{1}, a_{2}, a_{3}>$ is the directed line segment $\overrightarrow{O P}$ from the origin to the point $P\left(a_{1}, a_{2}, a_{3}\right)$, and $\mathbf{a}=<a_{1}, a_{2}, a_{3}>$ is called the position vector of the point $P\left(a_{1}, a_{2}, a_{3}\right)$.

If $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$, then

$$
\overrightarrow{A B}=<x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>
$$

$|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$
$\mathbf{a}+\mathbf{b}=<a_{1}+b_{1}, a_{2}+b_{2}>$
$c \mathbf{a}=<c a_{1}, c a_{2}>$
$\mathbf{a}-\mathbf{b}=<a_{1}-b_{1}, a_{2}-b_{2}>$
$\mathbf{i}=<1,0>, \mathbf{j}=<0,1>$.
$\mathbf{a}=<a_{1}, a_{2}>=a_{1} \mathbf{i}+a_{2} \mathbf{j}$

3D

$\mathbf{a}+\mathbf{b}=<a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}>$
$c \mathbf{a}=<c a_{1}, c a_{2}, c a_{3}>$
$\mathbf{a}-\mathbf{b}=<a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}>$
$\mathbf{i}=<1,0,0>, \mathbf{j}=<0,1,0>, \mathbf{k}=<0,0,1>$
$\mathbf{a}=<a_{1}, a_{2}, a_{3}>=a_{1} \mathbf{i}+a_{2} \mathbf{i}+a_{3} \mathbf{k}$

Example 1. Find $|2 \mathbf{a}-5 \mathbf{b}|$ if

1. $\mathbf{a}=<-1,2>, \mathbf{b}=<-2,-1>$
2. $\mathbf{a}=<3,-1,2>, \mathbf{b}=<4,2,-1>$

Example 2. Find the unit vector in the direction of the given vector.

1. $\mathbf{a}=5 \mathbf{i}-3 \mathbf{j}$
2. $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$.
