Section 12.3 The dot product.

Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$. If either \vec{a} or \vec{b} is $\overrightarrow{0}$, we define $\vec{a} \cdot \vec{b}=0$.
If $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$, then

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

and

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\pi / 2$. Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.
Example 1. Find the values of x such that the vectors $\vec{a}=<x, 1,2>$ and $\vec{b}=<3,4, x>$ are orthogonal.

Direction angles and direction cosines. The direction angles of a nonzero vector \vec{a} are the angles α, β, and γ in the interval $[0, \pi]$ that \vec{a} makes with the positive $x-, y-$, and $z-$ axes. The cosines of these direction angles, $\cos \alpha, \cos \beta$, and $\cos \gamma$, are called the direction cosines of the vector \vec{a}.

We can write

$$
\vec{a}=<a_{1}, a_{2}, a_{3}>=<|\vec{a}| \cos \alpha,|\vec{a}| \cos \beta,|\vec{a}| \cos \gamma>=|\vec{a}|<\cos \alpha, \cos \beta, \cos \gamma>
$$

Therefore

$$
\frac{1}{|\vec{a}|} \vec{a}=<\cos \alpha, \cos \beta, \cos \gamma>
$$

which says that the direction cosines of \vec{a} are the components of the unit vector in the direction of \vec{a}. Example 2. Find the direction cosines of the vector $\langle-4,-1,2\rangle$.

$\overrightarrow{P S}=\operatorname{proj}_{\vec{a}} \vec{b}$ is called the vector projection of \vec{b} onto \vec{a}.
$|\overrightarrow{P S}|=$ comp $_{\vec{a}} \vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along \vec{a}. The scalar projection of \vec{b} onto \vec{a} is the length of the vector projection of \vec{b} onto \vec{a} if $0 \leq \theta<\pi / 2$ and is negative if $\pi / 2 \leq \theta<\pi$.

$$
\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{b} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}<a_{1}, a_{2}, a_{3}>
$$

Example 3. Find the scalar and vector projections of $\vec{b}=\langle 4,2,0\rangle$ onto $\vec{a}=\langle 1,2,3\rangle$.

