Section 12.3 The dot product.

Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

where θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$. If either \vec{a} or \vec{b} is $\vec{0}$, we define $\vec{a} \cdot \vec{b} = 0$. If $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

and

$$\cos\theta = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$$

Two nonzero vectors \vec{a} and \vec{b} are called **perpendicular** or **orthogonal** if the angle between them is $\pi/2$. Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b} = 0$.

Example 1. Find the values of x such that the vectors $\vec{a} = \langle x, 1, 2 \rangle$ and $\vec{b} = \langle 3, 4, x \rangle$ are orthogonal.

Direction angles and direction cosines. The **direction angles** of a nonzero vector \vec{a} are the angles α , β , and γ in the interval $[0, \pi]$ that \vec{a} makes with the positive x-, y-, and z- axes. The cosines of these direction angles, $\cos \alpha$, $\cos \beta$, and $\cos \gamma$, are called the **direction cosines** of the vector \vec{a} .

We can write

Therefore

$$\frac{1}{|\vec{a}|}\vec{a} = <\cos\alpha,\cos\beta,\cos\gamma>$$

which says that the direction cosines of \vec{a} are the components of the unit vector in the direction of \vec{a} . **Example 2.** Find the direction cosines of the vector $\langle -4, -1, 2 \rangle$.

 $\vec{PS} = \text{proj}_{\vec{a}}\vec{b}$ is called the vector projection of \vec{b} onto \vec{a} . $|\vec{PS}| = \text{comp}_{\vec{a}}\vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along \vec{a} . The scalar projection of \vec{b} onto \vec{a} is the length of the vector projection of \vec{b} onto \vec{a} if $0 \leq \theta < \pi/2$ and is negative if $\pi/2 \le \theta < \pi.$

$$\boxed{\operatorname{comp}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}} \operatorname{proj}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2}\vec{a} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2} < a_1, a_2, a_3 >$$

Example 3. Find the scalar and vector projections of $\vec{b} = \langle 4, 2, 0 \rangle$ onto $\vec{a} = \langle 1, 2, 3 \rangle$.