Definition. If \mathbf{a} and \mathbf{b} are nonzero three-dimensional vectors, the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=(|\mathbf{a}||\mathbf{b}| \sin \theta) \mathbf{n}
$$

where θ is the angle between \mathbf{a} and \mathbf{b} and \mathbf{n} is a unit vector perpendicular to both \mathbf{a} and \mathbf{b} and whose direction is given by the right-hand rule: If the fingers of your hand curl through the angle θ from \mathbf{a} to \mathbf{b}, then your thumb points in the direction of \mathbf{n}.

If either \mathbf{a} or \mathbf{b} is $\mathbf{0}$, then we define $\mathbf{a} \times \mathbf{b}$ to be $\mathbf{0}$.
$\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.
Two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b}=\mathbf{0}$.
Properties of the cross product. If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and k is a scalar, then

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $(k \mathbf{a}) \times \mathbf{b}=k(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(k \mathbf{b})$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

The cross product in component form.
The cross product of $\mathrm{a} \mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ is

$$
\begin{gathered}
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\mathbf{i}\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|= \\
\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{gathered}
$$

Example 1. If $\mathbf{a}=<-2,3,4>$ and $\mathbf{b}=<3,0,1>$, find $\mathbf{a} \times \mathbf{b}$.

Example 2. Find the area of the triangle with vertices $A(1,2,3), B(2,-1,1), C(0,1,-1)$.

Example 3. Find a unit vector orthogonal to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{i}-\mathbf{j}+\mathbf{k}$.

Triple products

The product $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ is called the scalar triple product of the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}.
The volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is the magnitude of their scalar triple product:

$$
\begin{gathered}
V=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})| . \\
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}
\end{gathered}
$$

Suppose that \mathbf{a}, \mathbf{b}, and \mathbf{c} are given in component form:

$$
\mathbf{a}=<a_{1}, a_{2}, a_{3}>, \quad \mathbf{b}=<b_{1}, b_{2}, b_{3}>, \quad \mathbf{c}=<c_{1}, c_{2}, c_{3}>.
$$

Then

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Example 4. Find the volume of the parallelepiped determined by vectors $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k}, \mathbf{b}=\mathbf{i}-\mathbf{j}$, and $\mathbf{c}=2 \mathbf{i}+3 \mathbf{k}$.

The product $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ is called the vector triple product of the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}.

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
$$

