HW over 12.3, 12.4, 12.5 is due 2/1, 11:55 PM

Section 12.4 The cross product.

Definition. If a and b are nonzero three-dimensional vectors, the cross product of a and b is the vector

$$\mathbf{a} \times \mathbf{b} = (|\mathbf{a}||\mathbf{b}|\sin\theta)\mathbf{n}$$

where θ is the angle between **a** and **b** and **n** is a unit vector perpendicular to both **a** and **b** and whose direction is given by the right-hand rule: If the fingers of your hand curl through the angle θ from **a** to **b**, then your thumb points in the direction of **n**.

If either \mathbf{a} or \mathbf{b} is $\mathbf{0}$, then we define $\mathbf{a} \times \mathbf{b}$ to be $\mathbf{0}$.

 $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

Properties of the cross product. If a, b, and c are vectors and k is a scalar, then

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2.
$$(k\mathbf{a}) \times \mathbf{b} = k(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (k\mathbf{b})$$

3.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

4.
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

The cross product in component form.

The cross product of a $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ is

$$\overrightarrow{a} \times \overrightarrow{e} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{bmatrix} \overrightarrow{a} \times \overrightarrow{e} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k} \end{bmatrix}$$

 $= a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_1 b_3 c_2 - a_2 b_1 c_3$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{c} & \vec{c} & \vec{d} \\ -2 & 3 & 3 \end{vmatrix}$$

$$\begin{array}{ll}
\vec{J} & = \vec{z}(\hat{3})(1) + \vec{J}(4)(3) + \xi(2)(0) \\
- \vec{E}(\hat{3})(3) - \vec{z}(4)(0) - \vec{J}(-2)(1)
\end{array}$$

$$= 3\vec{z}' + \beta\vec{J}' - 9\vec{E} + 2\vec{J}'$$

$$= 3\vec{z}' + \beta\vec{J}' - 9\vec{E}$$

Example 2. Find the area of the triangle with vertices A(1,2,3), B(2,-1,1), C(0,1,-1).

$$A_{\Delta} = \frac{1}{2} | AB \times AC |$$

$$AB = \langle 2 - 1, -1 - 2, 1 - 3 \rangle = \langle 1, -3, -2 \rangle$$

$$AC = \langle 0 - 1, 1 - 2, -1 - 3 \rangle = \langle -1, -1, -4 \rangle$$

$$AC = \langle 0 - 1, 1 - 2, -1 - 3 \rangle = \langle -1, -1, -4 \rangle$$

$$AC = \langle 0 - 1, 1 - 2, -1 - 3 \rangle = \langle -1, -1, -4 \rangle$$

$$AC = \langle 0 - 1, 1 - 2, -1 - 3 \rangle = \langle -1, -1, -4 \rangle$$

$$AC = \langle 0 - 1, 1 - 2, -1 - 3 \rangle = \langle -1, -1, -4 \rangle$$

$$= |0C + 6C - 4C$$

$$AD = \sqrt{152} = \sqrt{38}$$

$$AD = \sqrt{152} = \sqrt{38}$$

Example 3. Find a unit vector orthogonal to both i + j and i - j + k.

$$\vec{a} = \vec{c} + \vec{j} = \langle 1, 1, 0 \rangle$$
 $\vec{c} = \vec{c} - \vec{j} + \vec{c} = \langle 1, -1, 1 \rangle$
 $\vec{a} \times \vec{c}' = \vec{j} + \vec{c} = \langle 1, -1, 1 \rangle$

$$= \vec{L} - \vec{Z} - \vec{L} - \vec{J}$$

$$= \vec{L} - \vec{J} - 2\vec{E}$$

$$-\left(\vec{a}\times\vec{b}\right)=\left[-\vec{t}+\vec{j}+2\vec{k}\right]$$

Triple products

The product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is called the scalar triple product of the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} .

The volume of the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is the magnitude of their scalar

triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|.$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Suppose that a, b, and c are given in component form:

$$\mathbf{a} = < a_1, a_2, a_3 >$$
, $\mathbf{b} = < b_1, b_2, b_3 >$, $\mathbf{c} = < c_1, c_2, c_3 >$.

Then

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Example 4. Find the volume of the parallelepiped determined by vectors $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, $\mathbf{b} = \mathbf{i} - \mathbf{j}$, and = <2,3,-2>, モニ < 1,-1,0>, で= <2,0,3>

Three vectors \vec{a} , \vec{b} and \vec{c} are coplanar (lie in the same plane) if and only if $|\vec{a} \cdot (\vec{b} \times \vec{c})| = 0$

