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Section 12.4 The cross product.

Definition. If a and b are nonzero three-dimensional vectors, the cross product of a and b is|the vector
z a x b = (|a||b| sinfn
where # is the angle between a and b and n is a unit vector perpendicular to both a and b and whose direction

is given by the right-hand rule: If the fingers of your hand curl through the angle # from a to b.|then your

thumb points in the direction of n.

If either a or b is 0, then we define a x b to be 0.

a x b is orthogonal to both a and b.
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Two nonzero vectors a and b are parallel if and only if a x b= 0.

Properties of the cross product. If a. b, and ¢ are vectors and & is a scalar, then
lLaxb=-bhxa

2. (ka) x b= k{a x b) = a x (kb)

3. ax(bte)=axbtaxc

4. (a+b)xc=axc+bxe
The length of the cross product a x b is equal to the area of the parallelogram determined by a and b.
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The cross product in component form.
The cross product of a a = a1 4+ aaj + ozk and b = i + baj + bsk is
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Example 1. Ifa=<-2.3,4>and b=<3,0,1>. find a x b.
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Example 2. Find the area of the triangle with vertices A(1,2.3), B(2, —1.1), C(0,1, —1).
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Example 3. Find smmit-vectorforthogonal to both i+ j and i —j + k.
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Triple products

The product a - (b « ¢} is called the scalar triple product of the vectors a, b, and c.
te 1albue
The volume of the parallelepiped determined by the vectors a, b, and ¢ is the magmtude-of their scalar

triple product:
V=la-(bxc]

a-(bxec)=(axb)-c
Suppose that a, b, and ¢ are given in component form:

a=<dy,ds,a3 >, b=<b bbby > Cc=<cp,00,03>.

Then

Example 4. Find the volume of the parallelepiped determined by vectors a = 2i4+3j— 2k, b =1i—j, and

c=2i+3k X=<23,727, =< -),07, T=<2,0,3>

= -L+0+0 - 940- 4 =-/9
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The product a = (b x ¢ is called the vector triple product of the vectors a, b, and «.

'ax(bxc]={a7-‘cjb—(a-bc.

e




	Page 1
	Page 2
	Page 3
	Page 4

