A line L in 3D space is determined when we know a point $P_0(x_0, y_0, z_0)$ on L and the direction of L. Let **v** be a vector parallel to L, P(x, y, z) be an arbitrary point on L and **r**₀ and **r** be position vectors of P_0 and P.

 $\mathbf{r} = \mathbf{r}_0 + \overrightarrow{P_0P}$. Since $\overrightarrow{P_0P}$ is parallel to \mathbf{v} , there is a scalar t such that $\overrightarrow{P_0P} = t\mathbf{v}$. Thus a vector equation of L is

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

Each value of the **parameter** t gives the position vector \mathbf{r} of a point on L.

If $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$, $\mathbf{r} = \langle x, y, z \rangle$, and $\mathbf{v} = \langle a, b, c \rangle$, then

$$\langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$$

or

$$x = x_0 + ta, \quad y = y_0 + tb, \quad z = z_0 + tc$$

where $t \in \mathbb{R}$. These equations are called **parametric equations** of the line L through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$.

If a vector $\mathbf{v} = \langle a, b, c \rangle$ is used to describe the direction of a line L, then the numbers a, b, and c are called **direction numbers** of L.

Example 1. Find the vector equation and parametric equations for the line passing through the point P(1, -1, -2) and parallel to the vector $\mathbf{v} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

Since vectors $\mathbf{v} = \langle a, b, c \rangle$ and $\overrightarrow{P_0P} = \langle x - x_0, y - y_0, z - z_0 \rangle$ are parallel, then

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

These equations are called **symmetric equations** of *L*. If one of *a*, *b*, or *c* is 0, we can still write symmetric equations. For instance, if c = 0, then the symmetric equations of *L* are

$$\frac{x - x_0}{a} = \frac{y - y_0}{b}, \quad z = z_0$$

This means that L lies in the plane $z = z_0$.

Example 2. Find symmetric equations for the line passing through the given points: (a) (2, -6, 1), (1, 0, -2)

(b) (-1, 2, -4), (-1, -3, 2)

Example 3. Find symmetric equations for the line that passes through the point (0, 2, -1) and is parallel to the line with parametric equations x = 1 + 2t, y = 3t, and z = 5 - 7t.

Example 4. Determine whether the lines L_1 and L_2 are parallel, skew (do not intersect and are not parallel), or intersecting. If they intersect, find the point of intersection.

(a)
$$L_1: \frac{x-4}{2} = \frac{y+5}{4} = \frac{z-1}{-3}, L_2: \frac{x-2}{1} = \frac{y+1}{3} = \frac{z}{3}$$

(b)
$$L_1: \frac{x-1}{2} = \frac{y}{1} = \frac{z-1}{4}, L_2: \frac{x}{1} = \frac{y+2}{2} = \frac{z+2}{3}$$

(c)
$$L_1: x = -6t, y = 1 + 9t, z = -3t,$$

 $L_2: x = 1 + 2s, y = 4 - 3s, z = s.$

A plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector **n** that is orthogonal to the plane. **n** is called a **normal vector**. Let P(x, y, z) be an arbitrary point in the plane and **r** and **r**₀ be the position vectors of P and P_0 .

 $\overrightarrow{P_0P} = \mathbf{r} - \mathbf{r}_0$. The normal vector \mathbf{n} is orthogonal to every vector in the given plane, in particular, \mathbf{n} is orthogonal to $\overrightarrow{P_0P}$.

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$
 or $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$

Either of the two equations is called a vector equation of the plane.

Let $\mathbf{n} = \langle a, b, c \rangle$, $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$, and $\mathbf{r} = \langle x, y, z \rangle$, then

$$\mathbf{v} \cdot (\mathbf{r} - \mathbf{r}_0) = a(x - x_0) + b(y - y_0) + c(z - z_0)$$

so we can rewrite the vector equation in the following way:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

This equation is called the scalar equation of the plane through $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$.

By collecting terms in a scalar equation of a plane, we can rewrite the equation as

$$ax + by + cz + d = 0,$$

where $d = -ax_0 - by_0 - cz_0$.

Example 5. Find the equation of the plane through the point $P_0(-5, 1, 2)$ with the normal vector $\mathbf{n} = \langle 3, -3, -1 \rangle$.

Example 6. Find the equation of the plane passing through the points (-1, 1, -1), (1, -1, 2), (4, 0, 3).

Example 7. Find an equation of the plane that passes through the point (1, 6, -4) and contains the line x = 1 + 2t, y = 2 - 3t, z = 3 - t.

Two planes are **parallel** if their normal vectors are parallel. If two planes are not parallel, then they intersect in a straight line and the angle between the two planes is defined as the acute angle between their normal vectors. **Example 8.** (a) Find the angle between the planes x - 2y + z = 1 and 2x + y + z = 1. (b) Find symmetric equation for the line of intersection of the planes.

Problem. Find a formula for the distance D from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0.

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Example 9. Find the distance between the parallel planes x + 2y - z = -1 and 3x + 6y - 3z = 4.