Section 13.1 Vector functions and space curves.

Let \mathbf{r} be a vector function whose range is a set of three-dimensional vectors.

$$
\mathbf{r}(t)=<f(t), g(t), h(t)>=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

Functions f, g, and h are real-valued functions called the component functions of \mathbf{r}.
The domain of \mathbf{r} consists of all values of t for which the expression for $\mathbf{r}(t)$ is defined.
Example 1. Find the domain of the vector function $\mathbf{r}(t)=\left\langle\sqrt{9-t}, \sqrt{t-2}, \frac{e^{t}}{t-5}\right\rangle$.

Definition. If $\mathbf{r}(t)=<f(t), g(t), h(t)>$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle
$$

provided the limits of the component function exist.
Example 2. Find the limit

$$
\lim _{t \rightarrow 0}\left\langle\frac{1-\cos t}{t}, t^{3}, e^{-1 / t^{2}}\right\rangle
$$

Definition. A vector function \mathbf{r} is continuous at a if $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)$.
\mathbf{r} is continuous at a if and only if its component functions f, g, and h are continuous at a.
Space curves. Suppose that f, g, and h are continuous real-valued functions on an interval I. Then the set C of all points (x, y, z) in space, where

$$
x=f(t), \quad y=g(t) \quad z=h(t)
$$

ant t varies throughtout the interval I, is called a space curve. Equations

$$
x=f(t), \quad y=g(t) \quad z=h(t)
$$

are called parametric equations of \mathbf{C} and t is called a parameter.

Example 3. Sketch the curve with the given vector equation.

1. $\mathbf{r}(t)=<1-t, t, t-2>$
2. $\mathbf{r}(t)=<\cos 4 t, t, \sin 4 t>$
3. $\mathbf{r}(t)=<\cos t, \sin t, \sin 5 t>$

Derivatives and integrals. The derivative \mathbf{r}^{\prime} of a vector function \mathbf{r} is

$$
\frac{d \mathbf{r}}{d t}=\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

The vector $\mathbf{r}^{\prime}(t)$ is called the tangent vector to the curve defined by \mathbf{r} at the point P, provided that $\mathbf{r}^{\prime}(t)$ exists and $\mathbf{r}^{\prime}(t) \neq \overrightarrow{0}$. The tangent line to C at P is defined to be the line through P parallel to the tangent vector $\mathbf{r}^{\prime}(t)$. The unit tangent vector

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

Theorem. If $\mathbf{r}(t)=<f(t), g(t), h(t)>$, then

$$
\mathbf{r}^{\prime}(t)=<f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)>
$$

Example 4. Find the derivative of the vector function $\mathbf{r}(t)=\ln \left(4-t^{2}\right) \mathbf{i}+\sqrt{1+t} \mathbf{j}-4 e^{3 t} \mathbf{k}$.

Example 5. At what point do the curves $\mathbf{r}_{1}(t)=<t, 1-t, 3+t^{2}>$ and $\mathbf{r}_{2}(s)=<3-s, s-2, s^{2}>$ intersect? Find their angle of intersection.

Theorem. Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

1. $\frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$
2. $\frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t)$
3. $\frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$
4. $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)$
5. $\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$
6. $\frac{d}{d t}[\mathbf{u}(f(t))]=f^{\prime}(t) \mathbf{u}^{\prime}(t)$

If $|\mathbf{r}(t)|=c$, where c is a constant, then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.
The definite integral of a continuous vector function $\int_{a}^{b} \mathbf{r}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle$
The Fundamental Theorem of Calculus for continuous vector functions says that

$$
\left.\int_{a}^{b} \mathbf{r}(t) d t=\mathbf{R}(t)\right]_{a}^{b}=\mathbf{R}(b)-\mathbf{R}(a)
$$

where \mathbf{R} is an antiderivative of \mathbf{r}. We use the notation $\int \mathbf{r}(t) d t$ for indefinite integrals (antiderivatives). Example 6. Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=<\sin t,-\cos t, 2 t>$ and $\mathbf{r}(0)=\mathbf{i}+\mathbf{j}+2 \mathbf{k}$.

