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Section 13.1 Vector functions and space curves.

r(t) =< f(t). g(t). h{f) >= f()i+ g(t)j + h(t)k

Functions f. g. and h are real-valued functions ecalled the component functions of r.
The domain of r consists of all values of # for which the expression for r(t) is defined.

Example 1. Find the domain of the vector function r(t) = <\JE} — =2,
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Definition. If r(t) =< f(t), g(t). h(t) =, then
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provided the limits of the component function exist. LM M/—f;’/
Example 2. Find the limit
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Definition. A vector function r is continuons at a if
r is continuous at a if and only if its component funcfions f, g, am are continuous at a.

Space curves. Suppose that f. g, and i are continuous real-valued functions on an interval I. Then the
set ' of all points (x,y. z) in space, where

x=f{t), wy=glt) z=nh{f)
ant t varies throughtout the interval I, is called a space curve. Equations
r=f(t), y=aglt) z=h()
are called parametric equations of C and ¢ is called a parameter.




Example 3. Sketch the curve with the given vector equation.
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2. r(t) =< cos4t.t.sindt >
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Derivatives and integrals. The derivative ¥ of a vector function r is
dr . r(t+h)—r(t)
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The vector r'(t) is called the tangent vector to the eurve defined by r at the point P, provided that v'(t)
exists and r'(t) # 0. The tangent line to ' at P is defined to be the line through P parallel to the tangent

vector r'(t). The unit tangent vector

Theorem. If vt) =< (£}, g(t). h() =, then
r'(t) =< f'(t).g" (). h'(8) >

Example 4. Find the derivative of the vector function r(t) = In{4 — t*)i + T ¥ £j — 4e™k.
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Example 5. At what point do the curves ry(t) =< t,1 —£,3+* > and ra(s) =< 3 — 5,5 — 2, 5* > intersect?
Find their angle of intersection.
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Theorem. Suppose u and v are differentiable vector functions, ¢ is a sealar, and f is a real-valued function
Then
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Zleu(t)] = ew'(t)
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- %URPU(!)] = f'(tyult) + ftp'(2)

5. %[u(!) * w(t)] = w'(t) x w(t) +ult) = v'(t)
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I |r(t)| = ¢, where ¢ is a constant, then r'(t) is orthogonal to r(f) for all .
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The Fundamental Theorem of Calculus for continuous vector functions says that

The definite integral of a continuous vector functioy

b
st = R =R - R@

where R is an antiderivative of r. We use the notation [ r(t)dt for indefinite integrals (antiderivatives).
Example 6. Find r(t) if r'(f) =< sint. —cost.2t > and r(0) =i+j+2k. = <[, /[,2>
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