Definition. If $\mathbf{r}(t)=<x(t), y(t), z(t)>$ is a vector function representing the position of a particle at time t, then
velocity at time t is

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=<x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)>
$$

speed at time t is

$$
s=|\mathbf{v}(t)|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}}
$$

acceleration at time t is

$$
\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)=<x^{\prime \prime}(t), y^{\prime \prime}(t), z^{\prime \prime}(t)>
$$

Example 1. The vector function $\vec{r}(t)=<t^{2}+t, t^{2}-t, t^{3}>$ represents the position of a particle at time t. Find the velocity, acceleration and the speed.

Example 2. Find the velocity and position vectors of a particle that has the acceleration $\mathbf{a}(t)=\sin t \mathbf{i}+2 \cos t \mathbf{j}+6 t \mathbf{k}$ with the initial velocity $\mathbf{v}(0)=-\mathbf{k}$ ans initial position $\mathbf{r}(0)=\mathbf{j}-4 \mathbf{k}$.

