Section 14.4 Tangent planes and linear approximations.

Tangent planes.

- Suppose a surface S has equation z = f(x, y), where f has continuous first partial derivatives, and let $P(x_0, y_0, z_0)$ be a point on S.
- Let C_1 and C_2 be the curves obtained by intersecting the vertical planes $y = y_0$ and $x = x_0$ with the surface S. P lies on both C_1 and C_2 .
- Let T_1 and T_2 be the tangent lines to the curves C_1 and C_2 at the point P.
- The tangent plane to the surface S at the point P is defined to be the plane that containts both of the tangent lines T_1 and T_2 .

An equation on the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Example 1. Find the equation of the tangent plane to the surface $z = \ln(2x + y)$ at the point (-1, 3, 0).

Linear Approximations.

An equation of a tangent plane to the graph of the function f of two variables at the point (a, b, f(a, b)) is

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

The linear function

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the **linearization** of f(a, b) and the approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the **linear approximation** of the **tangent line approximation** of f at (a, b). **Example 2.** Find the linear approximation for the function $f(x, y) = \sqrt{20 - x^2 - 7y^2}$ at (2, 1) and use it to approx-

imate f(1.95, 1.08)

Differentials. Consider a function of two variables z = f(x, y). If x and y are given increments Δx and Δy , then the corresponding **increment** of z is

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

The increment Δz represents the change in the value of f when (x, y) changes to $(x + \Delta x, y + \Delta y)$.

The differentials dx and dy are independent variables. The differential dz (or the total differential), is defined by

$$dz = f_x(x,y)dx + f_y(x,y)dy$$

Example 3. Find the differential of the function $z = \sqrt[3]{x+y^2}$.

If we take

$$dx = \Delta x = x - a$$
 $dy = \Delta y = y - b$

then the differential of z is

$$dz = f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

On the other hand, the equation of the tangent plane to the surface z = f(x, y) at the point (a, b, f(a, b)) is

$$z - f(a, b) = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

We see that dz represents the change of height of the tangent plane whereas Δz represent the change in height of the surface z = f(x, y) when (x, y) changes from (a, b) to $(a + \Delta x, b + \Delta y)$.

If $dx = \Delta x$ and $dy = \Delta y$ are small, then $\Delta z \approx dz$ and

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + dz$$

Functions of three or more variables. If u = f(x, y, z), then the increment of u is

$$\Delta u = f_x(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$$

The differential du is defined in terms of the differentials dx, dy, and dz of the independent variables by

$$du = f_x(x, y, z)dx + f_y(x, y, z)dy + f_z(x, y, z)dz$$

If $dx = \Delta x$, $dy = \Delta y$, and $dz = \Delta z$ are small and f has continuous partial derivatives, then $\Delta u \approx du$.