Section 14.8 Lagrange multipliers.

Problem. Find the extreme values of the function $w=f(x, y, z)$ subject to the constraint $g(x, y, z)=k$.
To find the maximum and minimum values of $f(x, y, z)$ subject to constraint $g(x, y, z)=k$ (assuming that these extreme values exist):

1. Find all values of x, y, z, and λ such that
and

$$
\begin{aligned}
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z) \\
g(x, y, z) & =k
\end{aligned}
$$

2. Evaluate f at all the points (x, y, z) that arise from step 1 . The largest of these values is the maximum value of f; the smallest is the minimum value of f.

The number λ is called a Lagrange multiplier. The procedure described above is called the method of Lagrange multipliers.

If we rewrite the vector equation $\nabla f=\lambda \nabla g$ in terms of its components, then the equation in step 1 become

$$
\begin{aligned}
& f_{x}=\lambda g_{x} \\
& f_{y}=\lambda g_{y} \\
& f_{z}=\lambda g_{z} \\
& g(x, y, z)=k
\end{aligned}
$$

Example 1. Use Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=x^{2}+y^{2}$ subject to the constraint $x^{4}+y^{4}=1$.

Suppose now we want to find the maximum and minimum values of $f(x, y, z)$ subject to two constrains (side conditions) of the form $g(x, y, z)=k$ and $h(x, y, z)=c$. There are numbers λ and μ (called Lagrange multipliers) such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z)
$$

In this case Lagrange's method is to look for extreme values by solving five equations

$$
\begin{aligned}
& f_{x}=\lambda g_{x}+\mu h_{x} \\
& f_{y}=\lambda g_{y}+\mu h_{y} \\
& f_{z}=\lambda g_{z}+\mu h_{z} \\
& g(x, y, z)=k \\
& h(x, y, z)=c
\end{aligned}
$$

in unknowns x, y, z, λ, and μ.
Example 2. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points of this ellipse that are nearest to and farthest from the origin.

