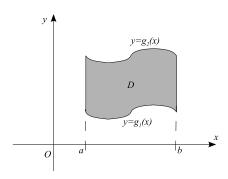
Section 15.2 Double integrals over general regions.

A plane region D is said to be of type I if it lies between the graphs of two continuous functions of f, that is,

$$D = \{(x, y) | x \le x \le b, g_1(x) \le y \le g_2(x) \}$$

where g_1 and g_2 are continuous on [a, b].



In order to evaluate $\iint_D f(x,y)dA$ when D is a region of type I, we choose a rectangle $R = [a,b] \times [c,d]$ that contains D and we let

$$F(x,y) = \begin{cases} f(x,y), & \text{if } (x,y) \in D \\ 0, & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}$$

Then, by Fubini's Theorem,

$$\iint\limits_D f(x,y)dA = \iint\limits_R F(x,y)dA = \int\limits_a^b \int\limits_c^d F(x,y) \ dydx$$

Since
$$F(x,y)=0$$
 if $y< g_1(x,y)$ or $y>g_2(x)$, then
$$\int\limits_c^d F(x,y)\ dy=\int\limits_c^{g_1(x)} F(x,y)\ dy+\int\limits_{g_1(x)}^d F(x,y)\ dy+\int\limits_{g_2(x)}^d F(x,y)\ dy=\int\limits_{g_1(x)}^{g_2(x)} f(x,y)\ dy.$$
 If f is continuous on a type I region D such that

$$D = \{(x, y) | x \le x \le b, g_1(x) \le y \le g_2(x)\}$$

then

$$\iint\limits_{D} f(x,y)dA = \int\limits_{a}^{b} \int\limits_{g_{1}(x)}^{g_{2}(x)} f(x,y) \ dydx$$

Example 1. Evaluate the integral

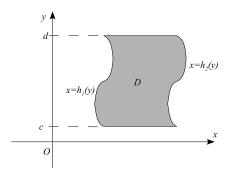
$$\iint\limits_{D} xy \ dA$$

if $D = \{(x, y) | 0 \le x \le 1, x^2 \le y \le \sqrt{x} \}.$

We also consider the plane region of type II, which can be expressed as

$$D = \{(x, y) | c \le y \le d, h_1(y) \le x \le h_2(y)\}$$

where h_1 and h_2 are continuous.



We can show that

$$\iint\limits_{D} f(x,y)dA = \int\limits_{c}^{d} \int\limits_{h_{1}(y)}^{h_{2}(y)} f(x,y) \ dxdy$$

where D is a type II region.

Example 2. Evaluate the double integrals

$$\iint\limits_{D} (y^2 - x) \ dA,$$

where D is bounded by $x = y^2$ and $x = 3 - 2y^2$.

Properties of double integrals.

We assume that all of the following integrals exist. Then

1.
$$\iint\limits_{D} [f(x,y) + g(x,y)] dA = \iint\limits_{D} f(x,y) dA + \iint\limits_{D} g(x,y) dA$$

2.
$$\iint_D cf(x,y)dA = c \iint_D f(x,y)dA$$
, where c is a constant

3. If
$$f(x,y) \ge g(x,y)$$
 for all (x,y) in D , then

$$\iint\limits_{D} f(x,y)dA \ge \iint\limits_{R} g(x,y)dA$$

4. If $D = D_1 \cup D_2$, where D_1 and D_2 do not overlap except perhaps on their boundaries, then

$$\iint\limits_{D} f(x,y)dA = \iint\limits_{D_1} f(x,y)dA + \iint\limits_{D_2} f(x,y)dA$$

5.
$$\iint_{D} 1 \ dA = A(D)$$

6. If $m \leq f(x, y) \leq M$ for all (x, y) in D, then

$$mA(D) \le \iint_D f(x,y)dA \le MA(D).$$

3

The average value of a function.

The average value of a function f over a region D is

$$f_{ave} = \frac{1}{A(D)} \iint_D f(x, y) dA$$

Example 3. Find the average value of the function $f(x,y) = ye^x$ over a triangular region with vertices (0,0), (2,4), and (6,0).

Example 4. Sketch the region of integration and change the order of integration for

$$\int\limits_{0}^{1}\int\limits_{y^{2}}^{2-y}f(x,y)\ dxdy$$

Example 5. Find the volume of the solid under the paraboloid $z = 3x^2 + y^2$ and above the region bounded by y = x and $x = y^2 - y$.