We want to define the triple integrals for functions of three variables.
Let $f$ is defined on a rectangular box

$$
B=\{(x, y, z) \mid a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\}=[a, b] \times[c, d] \times[r, s]
$$



We partition the intervals $[a, b],[c, d]$, and $[r, s]$ as follows:

$$
\begin{aligned}
& a=x_{0}<x_{1}<\ldots<x_{m}=l \\
& c=y_{0}<y_{1}<\ldots<y_{n}=m \\
& r=z_{0}<z_{1}<\ldots<z_{k}=n
\end{aligned}
$$

The planes through these partition points parallel to coordinate planes divide the box $B$ into $l m n$ sub-boxes

$$
B_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{k-1}, z_{k}\right]
$$



The volume of $B_{i j k}$ is

$$
\Delta V_{i j k}=\Delta x_{i} \Delta y_{j} \Delta z_{k}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}, \Delta y_{j}=y_{j}-y_{j-1}$, and $\Delta z_{k}=z_{k}-z_{k-1}$.
Then we form the triple Riemann sum

$$
\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k}
$$

where $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \in B_{i j k}$. We define the norm $\|P\|$ of the partition $P$ to be the length of the longest diagonal of all the boxes $B_{i j k}$.
Definition. The triple integral of $f$ over the box $B$ is

$$
\iiint_{B} f(x, y, z) d V=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k}
$$

if this limit exists.
Fubini's Theorem for triple integrals. If $f$ is continuous on the rectangular box $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

There are five other possible orders in which we can integrate.
Example 1. Evaluate the integral $\iiint_{E}\left(x^{2}+y z\right) d V$, where

$$
E=\{(x, y, z) \mid 0 \leq x \leq 2,-3 \leq y \leq 0,-1 \leq z \leq 1\}
$$

Now we define the triple integral over a general bounded region $E$ in three-dimensional space.
A solid region $E$ is said to be of type $\mathbf{1}$ if it lies between the graphs of two continuous functions of $x$ and $y$, that is,

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

where $D$ is the projection of $E$ onto the $x y$-plane.


Then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A
$$

Example 2. Evaluate $\iiint_{E} x d V$, where $E$ is bounded by planes $x=0, y=0, z=0$, and $3 x+2 y+z=6$.

A solid region $E$ is of type 2 if it is of the form

$$
E=\left\{(x, y, z) \mid(y, z) \in D, u_{1}(y, z) \leq x \leq u_{2}(y, z)\right\}
$$

where $D$ is the projection of $E$ onto the $y z$-plane.


Then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A
$$

A solid region $E$ is of type 3 if it is of the form

$$
E=\left\{(x, y, z) \mid(x, z) \in D, u_{1}(x, z) \leq y \leq u_{2}(x, z)\right\}
$$

where $D$ is the projection of $E$ onto the $x z$-plane.


Then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A
$$

Example 3. Express the integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in six different ways, where $E$ is the solid bounded by

$$
y=4-x^{2}-z^{2}, \quad y=0
$$

## Applications of triple integrals.

$$
V(E)=\iiint_{E} d V
$$

Example 4. Find the volume of the solid bounded by the elliptic cylinder $x^{2}+z^{2}=4$ and the planes $y=0$ and $y=z+2$.

