Cylindrical coordinate system:

To convert from rectangular to cylindrical coordinates we use

$$
\begin{array}{|lll|}
\hline r^{2}=x^{2}+y^{2} & \tan \theta=\frac{y}{x} & z=z \\
\hline
\end{array}
$$

Example 1.

(a) Plot the point with cylindrical coordinates $(2,2 \pi / 3,8)$ and find its rectangular coordinates.
(b) Find the cylindrical coordinates of the point with rectangular coordinates $(-\sqrt{2}, \sqrt{2}, 0)$.

Example 2. Sketch the solid given by the inequalities

$$
0 \leq \theta \leq \pi / 2, \quad r \leq z \leq 2
$$

Suppose that E is a type 1 region whose projection D on the $x y$-plane is described in polar coordinates

$$
\begin{gathered}
E=\left\{(x, y, z) \mid(x, y) \in D, \varphi_{1}(x, y) \leq z \leq \varphi_{1}(x, y)\right\} \\
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
\end{gathered}
$$

Then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{\varphi_{1}(x, y)}^{\varphi_{2}(x, y)} f(x, y, z) d z\right] d A
$$

If we switch to cylindrical coordinates

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z, \quad d A=r d r d \theta
$$

we will get

$$
\iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{\varphi_{1}(r \cos \theta, r \sin \theta)}^{\varphi_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Example 3. Sketch the solid whose volume is given by $\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}} r d z d r d \theta$.

Example 4. Evaluate $\iiint_{E} y d V$ where E is the solid that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$, above the $x y$-plane, and below the plane $z=x+2$.

