Chapter 16. Vector calculus.

Section 16.1 Vector fields.
Definition. Let D be a set in \mathbb{R}^{2} (a plane region). A vector field on \mathbb{R}^{2} is a function \mathbf{F} that assigns to each point $(x, y) \in D$ a two-dimensional vector $\mathbf{F}(x, y)$.

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}
$$

The components functions P and Q are sometimes called scalar fields.

Definition. Let E be a set in \mathbb{R}^{3}. A vector field on \mathbb{R}^{3} is a function \mathbf{F} that assigns to each point $(x, y, z) \in E$ a two-dimensional vector $\mathbf{F}(x, y, z)$.

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

\mathbf{F} is continuous is and only if P, Q, and R are continuous.
Examples of vector fields.

Example 1. Sketch the vector field \mathbf{F} if $\mathbf{F}(x, y)=x \mathbf{i}-y \mathbf{j}$.

Let $f(x, y)$ be a scalar function of two variables, then

$$
\nabla f(x, y)=<f_{x}, f_{y}>
$$

is a vector field called a gradient vector field.
If $f(x, y, z)$ be a scalar function of three variables, then its gradient vector field is defined as

$$
\nabla f(x, y, z)=<f_{x}, f_{y}, f_{z}>
$$

Example 2. Find the gradient vector field of the function $f(x, y, z)=x \ln (y-z)$.

A vector field is called a conservative vector field if it is the gradient of some scalar function, that it. if there exists a function f such that $\mathbf{F}=\nabla f$. Then f is called a potential function for \mathbf{F}.

