Chapter 16. Vector calculus. Section 16.1 Vector fields.

Definition. Let *D* be a set in \mathbb{R}^2 (a plane region). A vector field on \mathbb{R}^2 is a function **F** that assigns to each point $(x, y) \in D$ a two-dimensional vector $\mathbf{F}(x, y)$.

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$$

The components functions P and Q are sometimes called scalar fields.

Definition. Let *E* be a set in \mathbb{R}^3 . A vector field on \mathbb{R}^3 is a function **F** that assigns to each point $(x, y, z) \in E$ a two-dimensional vector $\mathbf{F}(x, y, z)$.

$$\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$$

F is continuous is and only if P, Q, and R are continuous. Examples of vector fields.

Example 1. Sketch the vector field \mathbf{F} if $\mathbf{F}(x, y) = x\mathbf{i} - y\mathbf{j}$.

Let f(x, y) be a scalar function of two variables, then

$$\nabla f(x, y) = < f_x, f_y >$$

is a vector field called a gradient vector field.

If f(x, y, z) be a scalar function of three variables, then its gradient vector field is defined as

$$\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle$$

Example 2. Find the gradient vector field of the function $f(x, y, z) = x \ln(y - z)$.

A vector field is called a **conservative vector field** if it is the gradient of some scalar function, that it. if there exists a function f such that $\mathbf{F} = \nabla f$. Then f is called a **potential function** for \mathbf{F} .