Section 16.3 The Fundamental Theorem for line integrals.

Theorem. Let C be a smooth curve given by the vector function $\mathbf{r}(t), a \leq t \leq b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

Independence of path.

Suppose C_{1} and C_{2} are two piecewise-smooth curves (which are called paths) that have the same initial point A and the terminal point B. In general, $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r} \neq \int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$. But, according the the Theorem, if ∇f is continuous, then $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$. In other words, the line integral of a conservative vector field depends only on the initial point and terminal point of a curve.

In general, if \mathbf{F} is a continuous vector-field with domain D, we say that the line integral is independent of path if $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$ for any two paths C_{1} and C_{2} in D that have the same initial and terminal points. Line integrals of conservative vector fields are independent of path.

A curve is called closed if its terminal point coincides with its initial point, that is $\mathbf{r}(a)=\mathbf{r}(b)$.

If $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D and C is any closed path in D, we can choose any two points A and B on C and regard C as being composed of the path C_{1} from A to B followed by the path C_{2} from B to A.

Then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}-\int_{-C_{2}} \mathbf{F} \cdot d \mathbf{r}=0
$$

Also we can show that if $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ whenever C is a closed path in D, then $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D.

Theorem. $\quad \int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D if and only if $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed path in D.
Now we assume that D is open (for every point P in D there is a disk with center P that lies entirely in D) and connected (any two points in D can be joined by a path that lies in D).

Theorem. Suppose \mathbf{F} is a vector field that is continuous on an open connected region D. If $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D, then \mathbf{F} is a conservative vector field on D; that is, there exists a function f such that $\nabla f=\mathbf{F}$.

Question: How to determine whether or not a vector field \mathbf{F} is conservative?
Theorem. If $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a conservative vector fields, where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

The converse of Theorem is true only for a special type of the region.
Definition. A curve is simple if it does not cross itself anywhere between its endpoints.
Definition. A simply-connected region in the plane is a connected region D such that every simple closed curve in D encloses only points that are in D (simply-connected region contains no hole and cannot consist of two separate pieces).

Theorem. Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Then \mathbf{F} is conservative.

Example 1. Determine whether or not the vector field

$$
\mathbf{F}(x, y)=(y \cos x-\cos y) \mathbf{i}+(\sin x+x \sin y) \mathbf{j}
$$

is conservative.

Example 2.

1. If $\mathbf{F}=<2 x y^{3}, 3 x^{2} y^{2}>$, find a function f such that $\nabla f=\mathbf{F}$.
2. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the curve C given by $\mathbf{r}(t)=<\sin t, t^{2}+1>, 0 \leq t \leq \pi / 2$.

Example 3.

1. If $\mathbf{F}=<2 x z+\sin y, x \cos y, x^{2}>$, find a function f such that $\nabla f=\mathbf{F}$.
2. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the curve C given by $\mathbf{r}(t)=<\cos t, \sin t, t>, 0 \leq t \leq 2 \pi$.

Example 4. Show that the line integral $\int_{C} 2 x \sin y d x+\left(x^{2} \cos y-3 y^{2}\right) d y$ is independent of path and evaluate the integral if C is any path from $(-1,0)$ to $(5,1)$.

