## Curl.

If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on $\mathbb{R}^{3}$ and the partial derivatives of $P, Q$, and $R$ exist, then the $\mathbf{c u r l}$ of $\mathbf{F}$ is the vector field on $\mathbb{R}^{3}$ defined by

$$
\operatorname{curl} \mathbf{F}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

Let $\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}$ be the vector differential operator.

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

Then

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}=\operatorname{curl} \mathbf{F}
$$

Example 1. Find curl $\mathbf{F}$ if $\mathbf{F}(x, y, z)=x e^{y} \mathbf{i}-z e^{-y} \mathbf{j}+y \ln (z) \mathbf{k}$.

Theorem 1. If $f$ is a function of three variables that has continuous second-order partial derivatives, then

$$
\operatorname{curl}(\nabla f)=\mathbf{0}
$$

Theorem 2. If $\mathbf{F}$ is a vector field defined on all on $\mathbb{R}^{3}$ whose component functions have continuous partial derivatives and curl $\mathbf{F}=\mathbf{0}$, then $\mathbf{F}$ is a conservative vector field.

Example 2. Determine whether or not the vector field $\mathbf{F}=z x \mathbf{i}+x y \mathbf{j}+y x \mathbf{k}$ is conservative. If it is conservative, find a function $f$ such that $\mathbf{F}=\nabla f$.

The curl vector is associated with rotation. If for a vector field $\mathbf{F}$ curl $\mathbf{F}=\mathbf{0}$, then the field $\mathbf{F}$ is irrotational.
Example 3. Let $B$ be a rigid body rotation about the $z$-axis. The rotation can be described by the vector $\mathbf{w}=\omega \mathbf{k}$, where $\omega$ is the angular speed of $B$, that is the tangential speed of any point $P$ in $B$ divided by the distance $d$ from the axis of rotation. Let $\mathbf{r}=<x, y, z>$ be the position vector of $P$.


1. Show that velocity field of $B$ is given by $\mathbf{v}=\mathbf{w} \times \mathbf{r}$
2. Show that $\mathbf{v}=-\omega y \mathbf{i}+\omega x \mathbf{j}$
3. Show that curl $\mathbf{v}=2 \mathbf{w}$.

## Divergence.

Definition. If $\mathbf{F}=<P, Q, R>$ is a vector field in $\mathbb{R}^{3}$ and $P_{x}, Q_{y}$, and $R_{z}$ exist, then the divergence of $\mathbf{F}$ is the function of tree variables defined by

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

Example 4. Find the divergence of the vector field $\mathbf{F}(x, y, z)=x e^{y} \mathbf{i}-z e^{-y} \mathbf{j}+y \ln (z) \mathbf{k}$.

Theorem 3. If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+Q \mathbf{k}$ is a vector field on $\mathbb{R}^{3}$ and $P, Q$, and $R$ have continuous second-order derivatives, then

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=0
$$

Divergence is a vector operator that measures the magnitude of a vector field's source or sink at a given point, in terms of a signed scalar. If $\operatorname{div} \mathbf{F}=0$, then $\mathbf{F}$ is said to be incompressible.

Laplace operator:

$$
\operatorname{div}(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=\nabla^{2} f
$$

Properties of the curl and divergence.
If $f$ is a scalar field and $\mathbf{F}, \mathbf{G}$ are vector fields, then $f \mathbf{F}, \mathbf{F} \cdot \mathbf{G}$, and $\mathbf{F} \times \mathbf{G}$ are vector fields defined by

$$
\begin{aligned}
(f \mathbf{F})(x, y, z) & =f(x, y, z) \mathbf{F}(x, y, z) \\
(\mathbf{F} \cdot \mathbf{G})(x, y, z) & =\mathbf{F}(x, y, z) \cdot \mathbf{G}(x, y, z) \\
(\mathbf{F} \times \mathbf{G})(x, y, z) & =\mathbf{F}(x, y, z) \times \mathbf{G}(x, y, z)
\end{aligned}
$$

and

1. $\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div} \mathbf{F}+\operatorname{div} \mathbf{G}$
2. $\operatorname{curl}(\mathbf{F}+\mathbf{G})=\operatorname{curl} \mathbf{F}+\operatorname{curl} \mathbf{G}$
3. $\operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\mathbf{F} \cdot \nabla f$
4. $\operatorname{curl}(f \mathbf{F})=f \operatorname{curl} \mathbf{F}+(\nabla f) \times \mathbf{F}$
5. $\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \operatorname{curl} \mathbf{F}-\mathbf{F} \cdot \operatorname{curl} \mathbf{G}$
6. $\operatorname{div}(\nabla f \times \nabla g)=0$
7. curl $\operatorname{curl}(\mathbf{F})=\operatorname{grad} \operatorname{div} \mathbf{F}-\nabla^{2} \mathbf{F}$
8. $\nabla(\mathbf{F} \cdot \mathbf{G})=(\mathbf{F} \cdot \nabla) \mathbf{G}+(\mathbf{G} \cdot \nabla) \mathbf{F}+\mathbf{F} \times \operatorname{curl} \mathbf{G}+\mathbf{G} \times \operatorname{curl} \mathbf{F}$

## Vector forms of Green's Theorem.

Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ be a vector field. We suppose that the plane region $D$, its boundary curve $C$, and the functions $P$ and $Q$ satisfy the hypotheses of Green's Theorem. Then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} P d x+Q d y
$$

and

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P(x, y) & Q(x, y) & 0
\end{array}\right|=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

Therefore

$$
(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k}=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k} \cdot \mathbf{k}=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}
$$

and we can rewrite the equation in Green's Theorem in the vector form

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A
$$

If $C$ is given by the vector equation $\mathbf{r}(t)=<x(t), y(t)>, a \leq t \leq b$, then the unit tangent vector

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{x^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{i}+\frac{y^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{j}
$$

Then the outward unit normal vector to $C$ is given by

$$
\mathbf{n}(t)=\frac{y^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{i}-\frac{x^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{j}
$$

Then

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{a}^{b}(\mathbf{F} \cdot \mathbf{n})(t)\left|\mathbf{r}^{\prime}(t)\right| d t \\
=\int_{C} P d y-Q d x=\iint\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d A
\end{gathered}
$$

So,

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{D} \operatorname{div} \mathbf{F}(x, y) d A
$$

