Section 16.5 Curl and divergence.

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and the partial derivatives of P, Q, and R exist, then the **curl** of \mathbf{F} is the vector field on \mathbb{R}^3 defined by

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

Let $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$ be the vector differential operator.

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

Then

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathbf{k} = \text{curl } \mathbf{F}$$
Find curl \mathbf{F} if $\mathbf{F}(x, y, z) = xe^y \mathbf{i} - ze^{-y} \mathbf{j} + y \ln(z) \mathbf{k}$.

Example 1. Find curl **F** if $\mathbf{F}(x, y, z) = xe^y\mathbf{i} - ze^{-y}\mathbf{j} + y\ln(z)\mathbf{k}$.

Theorem 1. If f is a function of three variables that has continuous second-order partial derivatives, then

$$\operatorname{curl}(\nabla f) = \mathbf{0}$$

Theorem 2. If **F** is a vector field defined on all on \mathbb{R}^3 whose component functions have continuous partial derivatives and curl $\mathbf{F} = \mathbf{0}$, then **F** is a conservative vector field.

Example 2. Determine whether or not the vector field $\mathbf{F} = zx\mathbf{i} + xy\mathbf{j} + yx\mathbf{k}$ is conservative. If it is conservative, find a function f such that $\mathbf{F} = \nabla f$.

The curl vector is associated with rotation. If for a vector field \mathbf{F} curl $\mathbf{F} = \mathbf{0}$, then the field \mathbf{F} is **irrotational**.

Example 3. Let B be a rigid body rotation about the z-axis. The rotation can be described by the vector $\mathbf{w} = \omega \mathbf{k}$, where ω is the angular speed of B, that is the tangential speed of any point P in B divided by the distance d from the axis of rotation. Let $\mathbf{r} = \langle x, y, z \rangle$ be the position vector of P.

1. Show that velocity field of B is given by $\mathbf{v} = \mathbf{w} \times \mathbf{r}$

2. Show that $\mathbf{v} = -\omega y \mathbf{i} + \omega x \mathbf{j}$

3. Show that curl $\mathbf{v} = 2\mathbf{w}$.

Divergence.

Definition. If $\mathbf{F} = \langle P, Q, R \rangle$ is a vector field in \mathbb{R}^3 and P_x , Q_y , and R_z exist, then the **divergence** of \mathbf{F} is the function of tree variables defined by

div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Example 4. Find the divergence of the vector field $\mathbf{F}(x, y, z) = xe^y\mathbf{i} - ze^{-y}\mathbf{j} + y\ln(z)\mathbf{k}$.

Theorem 3. If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + Q\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order derivatives, then

div curl
$$\mathbf{F} = 0$$

Divergence is a vector operator that measures the magnitude of a vector field's source or sink at a given point, in terms of a signed scalar. If div $\mathbf{F} = 0$, then \mathbf{F} is said to be **incompressible**.

Laplace operator:

$$\operatorname{div}(\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \nabla^2 f$$

Properties of the curl and divergence.

If f is a scalar field and **F**, **G** are vector fields, then f **F**, **F** · **G**, and **F** × **G** are vector fields defined by

$$(f\mathbf{F})(x,y,z) = f(x,y,z)\mathbf{F}(x,y,z)$$
$$(\mathbf{F} \cdot \mathbf{G})(x,y,z) = \mathbf{F}(x,y,z) \cdot \mathbf{G}(x,y,z)$$
$$(\mathbf{F} \times \mathbf{G})(x,y,z) = \mathbf{F}(x,y,z) \times \mathbf{G}(x,y,z)$$

and

1.
$$\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$$

2.
$$\operatorname{curl}(\mathbf{F} + \mathbf{G}) = \operatorname{curl} \mathbf{F} + \operatorname{curl} \mathbf{G}$$

3.
$$\operatorname{div}(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \nabla f$$

4.
$$\operatorname{curl}(f\mathbf{F}) = f \operatorname{curl} \mathbf{F} + (\nabla f) \times \mathbf{F}$$

5.
$$\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl} \mathbf{F} - \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$$

6.
$$\operatorname{div}(\nabla f \times \nabla g) = 0$$

7. curl curl(
$$\mathbf{F}$$
) = grad div $\mathbf{F} - \nabla^2 \mathbf{F}$

8.
$$\nabla (\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla) \mathbf{G} + (\mathbf{G} \cdot \nabla) \mathbf{F} + \mathbf{F} \times \text{curl } \mathbf{G} + \mathbf{G} \times \text{curl } \mathbf{F}$$

Vector forms of Green's Theorem.

Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field. We suppose that the plane region D, its boundary curve C, and the functions P and Q satisfy the hypotheses of Green's Theorem. Then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C Pdx + Qdy$$

and

$$\operatorname{curl} \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P(x,y) & Q(x,y) & 0 \end{vmatrix} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

Therefore

$$(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k} \cdot \mathbf{k} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$$

and we can rewrite the equation in Green's Theorem in the vector form

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (\text{curl } \mathbf{F}) \cdot \mathbf{k} \, dA$$

If C is given by the vector equation $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, $a \leq t \leq b$, then the unit tangent vector

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{x'(t)}{|\mathbf{r}'(t)|}\mathbf{i} + \frac{y'(t)}{|\mathbf{r}'(t)|}\mathbf{j}$$

Then the outward unit normal vector to C is given by

$$\mathbf{n}(t) = \frac{y'(t)}{|\mathbf{r}'(t)|}\mathbf{i} - \frac{x'(t)}{|\mathbf{r}'(t)|}\mathbf{j}$$

Then

$$\begin{split} \oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds &= \int_{a}^{b} (\mathbf{F} \cdot \mathbf{n})(t) |\mathbf{r}'(t)| dt \\ &= \int_{C} P dy - Q dx = \iint \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dA \end{split}$$

So,

$$\oint_C \mathbf{F} \cdot \mathbf{n} ds = \iint_D \operatorname{div} \mathbf{F}(x, y) dA$$