
Math 251. WEEK in REVIEW 5. Fall 2013

1. Given a⃗ =< 1, 1, 2 > and b⃗ =< 2,−1, 0 >. Find the area of the parallelogram with adjacent
sides a⃗ and b⃗.

SOLUTION. A = |⃗a× b⃗|

a⃗× b⃗ =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
1 1 2
2 −1 0

∣∣∣∣∣∣ = ı⃗

∣∣∣∣ 1 2
−1 0

∣∣∣∣− ȷ⃗

∣∣∣∣ 1 2
2 0

∣∣∣∣+ k⃗

∣∣∣∣ 1 1
2 −1

∣∣∣∣ = 2⃗ı+ 4ȷ⃗− 3k⃗

|⃗a× b⃗| =
√

(2)2 + (4)2 + (−3)2 =
√
29

Thus, A =
√
29.

2. Find an equation of the line through the point (1, 2,−1) and perpendicular to the plane

2x+ y + z = 2

SOLUTION. The line is parallel to the normal vector of the plane n⃗ =< 2, 1, 1 >. Thus,
symmetric equations of the line are:

x− 1

2
=

y − 2

1
=

z + 1

1

3. Find the distance from the point (1,−1, 2) to the plane

x+ 3y + z = 7

SOLUTION. D =
|1 + 3(−1) + 2− 7|√
(1)2 + (3)2 + (1)2

=
7√
11

.

4. Find an equation of the plane that passes through the point (−1,−3, 1) and contains the line
x = −1− 2t, y = 4t, z = 2 + t.

SOLUTION. The vector v⃗ =< −2, 4, 1 > lies in the plane. Let P (−1,−3, 1) and Q(−1, 0, 2).

The second vector that lies in the plane is the vector
−→
PQ =< 0, 3, 1 >. Then the normal vector

to the plane

n⃗ = v⃗ ×
−→
PQ =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
−2 4 1
0 3 1

∣∣∣∣∣∣ = ı⃗

∣∣∣∣ 4 1
3 1

∣∣∣∣− ȷ⃗

∣∣∣∣ −2 1
0 1

∣∣∣∣+ k⃗

∣∣∣∣ −2 4
0 3

∣∣∣∣ = ı⃗+ 2ȷ⃗− 6k⃗

Thus, an equation of the plane is

1(x+ 1) + 2(y + 3)− 6(z − 1) = 0

5. Find parametric equations of the line of intersection of the planes z = x+y and 2x−5y−z = 1.

SOLUTION. The direction vector for the line of intersection is v⃗ = n⃗1 × n⃗1, where n⃗1 =<
1, 1,−1 > is the normal vector for the first plane and n⃗2 =< 2,−5,−1 > is the normal vector
for the second plane.
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v⃗ = n⃗1 × n⃗2 =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
1 1 −1
2 −5 −1

∣∣∣∣∣∣ = ı⃗

∣∣∣∣ 1 −1
−5 −1

∣∣∣∣− ȷ⃗

∣∣∣∣ 1 −1
2 −1

∣∣∣∣+ k⃗

∣∣∣∣ 1 1
2 −5

∣∣∣∣ =
ı⃗(−1− 5)− ȷ⃗(−1 + 2) + k⃗(−5− 2) = −6⃗ı− ȷ⃗− 7k⃗

. To find a point on the line of intersection, set one of the variables equal to a constant, say
y = 0. Then the equations of the planes reduce to x − z = 0 and 2x − z = 1. Solving this
two equations gives x = z = 1. So a point on a line of intersection is (1, 0, 1). The parametric
equations for the line are

x = 1− 6t
y = −t
z = 1− 7t

6. Are the lines x = −1 + 4t, y = 3 + t, z = 1 and x = 13− 8s, y = 1− 2s, z = 2 parallel, skew
or intersecting? If they intersect, find the point of intersection.

SOLUTION. The direction vector for the first line is v⃗1 =< 4, 1, 0 >, the second line is parallel
to the vector v⃗2 =< −8,−2, 0 >. Since v⃗2 = −2v⃗1, vectors v⃗1 and v⃗2 are parallel. Thus, the
lines are parallel.

7. Identify and roughly sketch the following surfaces. Find traces in the planes x = k, y = k,
z = k

(a) 4x2 + 9y2 + 36z2 = 36

SOLUTION.
x2

9
+

y2

4
+ z2 = 1 - ellipsoid

–3
–2

–1
0

1
2

3

x
–1

0
1

2

y

–1

0

1

z

Traces

in x = k:
y2

4(1− k2

9
)
+

z2

1− k2

9

= 1 - ellipse

in y = k:
x2

9(1− k2

4
)
+

z2

1− k2

4

= 1 - ellipse

in z = k:
x2

9(1− k2)
+

y2

4(1− k2)
= 1 - ellipse

(b) y = x2 + z2

An equation y = x2 + z2 defines the elliptic paraboloid with axis the y-axis.

SOLUTION.
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0 1 2 3 4 5

y

–4
–2

0
2

4

x

–3

–2

–1

0

1

2

3

z

Traces
in x = k: y = z2 + k2 - parabola
in y = k: x2 + z2 = k - circle
in z = k: y = x2 + k2 - parabola

(c) 4z2 − x2 − y2 = 1

SOLUTION. An equation 4z2 − x2 − y2 = 1 defines the hyperboloid on two sheets with
axis the z-axis

–5
0

5

x
–6–4–20246 y

–3
–2
–1
0
1
2
3

z

Traces

in x = k:
z2

1/4(1− k2)
− x2

1− k2
= 1 - hyperbola

in y = k:
z2

1/4(1− k2)
− y2

1− k2
= 1 - hyperbola

in z = k (|k| > 1/2): x2 + y2 = 4k2 − 1 - circle

(d) x2 + 2z2 = 1

SOLUTION. An equation x2 + 2z2 = 1 defines the elliptic cylinder with axis y-axis.

–1 0 1
x

–1 0 1 2

y

–1

–0.5

0

0.5

1

z

Traces

in x = k: z =

√
1− k2

2
, z = −

√
1− k2

2
- lines

in z = k: x =
√
1− 2k2, x = −

√
1− 2k2 - lines

8. Find

lim
t→1

(√
t+ 3⃗ı+

t− 1

t2 − 1
ȷ⃗+

tan t

t
k⃗

)
SOLUTION.

lim
t→1

(√
t+ 3⃗ı+

t− 1

t2 − 1
ȷ⃗+

tan t

t
k⃗

)
= lim

t→1

√
t+ 3⃗ı+ lim

t→1

t− 1

t2 − 1
ȷ⃗+ lim

t→1

tan t

t
k⃗ =

√
4⃗ı+ lim

t→1

t− 1

(t− 1)(t+ 1)
ȷ⃗+ tan(1)k⃗ = 2⃗ı+

1

2
ȷ⃗+ tan(1)k⃗

9. Find the unit tangent vector T⃗ (t) for the vector function r⃗(t) =< t, 2 sin t, 3 cos t >.
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SOLUTION. The tangent vector r⃗′(t) =< 1, 2 cos t,−3 sin t >,

|r⃗′(t)| =
√
1 + 4 cos2 t+ 9 sin2 t =

√
1 + 4 cos2 t+ 4 sin2 t+ 5 sin2 t =

√
5 + 5 sin2 t

. The unit tangent vector

T⃗ (t) =
1

|r⃗′(t)|
r⃗′(t) =

1√
5 + 5 sin2 t

< t, 2 cos t,−3 sin t >

10. Evaluate
4∫

1

(√
t⃗ı+ te−tȷ⃗+

1

t2
k⃗

)
dt

SOLUTION.

4∫
1

(√
t⃗ı+ te−tȷ⃗+

1

t2
k⃗

)
dt =

 4∫
1

√
tdt

 ı⃗+

 4∫
1

te−tdt

 ȷ⃗+

 4∫
1

1

t2
dt

 k⃗

4∫
1

√
tdt =

t3/2

3/2

∣∣∣∣4
1

=
2

3
[43/2 − 1] =

2

3
(8− 1) =

14

3

4∫
1

te−tdt =

∣∣∣∣ u = t u′ = 1
v′ = e−t v = −e−t

∣∣∣∣ = −te−t|41 +
4∫

1

e−tdt = −4e−4 + e−1 − e−t|41 =

−4e−4 + e−1 − e−4 + e−1 = −5e−4 + 2e−1

4∫
1

1

t2
dt =

1

t

∣∣∣∣4
1

= −1

4
+ 1 =

3

4

Thus,
4∫

1

(√
t⃗ı+ te−tȷ⃗+

1

t2
k⃗

)
dt =

14

3
ı⃗+ (−5e−4 + 2e−1)ȷ⃗+

3

4
k⃗

11. Find the length of the curve given by the vector function r⃗(t) = cos3 t ı⃗ + sin3 t ȷ⃗ + cos(2t) k⃗,
0 ≤ t ≤ π

2
.

SOLUTION. r⃗′(t) = −3 cos2 t sin t ı⃗+ 3 sin2 t cos t ȷ⃗− 2 sin(2t) k⃗

|r⃗′(t)| =
√

9 cos4 t sin2 t + 9 sin4 t cos2 t + 4 sin2(2t)

Recall that sin(2t) = 2 sin t cos t, then sin2(2t) = 4 sin2 t cos2 t and

|r⃗′(t)| =
√

sin2 t cos2 t(9 sin2 t+ 9 cos2 t+ 16) = sin t cos t
√
25 = 5 sin t cos t =

5

2
sin(2t)

Then the length of the curve

L =
π/2∫
0

5

2
sin(2t) dt = −5

4
cos(2t)

∣∣∣∣π/2
0

=
5

2
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12. Find the curvature of the curve r⃗(t) =< 2t3,−3t2, 6t >.

SOLUTION.

κ(t) =
|r⃗′(t)× r⃗′′(t)|

|r⃗′(t)|3

r⃗′(t) =< 6t2,−6t, 6 >= 6 < t2,−t, 1 >, |r⃗′(t)| = 6
√
1 + t2 + t4

r⃗′′(t) =< 12t,−6, 0 >

r⃗′(t)× r⃗′′(t) =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
6t2 −6t 6
12t −6 0

∣∣∣∣∣∣ = ı⃗

∣∣∣∣ −6t 6
−6 0

∣∣∣∣− ȷ⃗

∣∣∣∣ 6t2 6
12t 0

∣∣∣∣+ k⃗

∣∣∣∣ 6t2 −6t
12t −6

∣∣∣∣ =
ı⃗(36)− ȷ⃗(−72t) + k⃗(−36t2 + 72t2) =< 36, 72t, 36t2 >= 36 < 1, 2t, t2 >

|r⃗′(t)× r⃗′′(t)| = 36
√
1 + 4t2 + t4

Thus,

κ(t) =
36
√
1 + 4t2 + t4

(6
√
1 + t2 + t4)3

=

√
1 + 4t2 + t4

6(1 + t2 + t4)3/2

13. Sketch the domain of the function

f(x, y) =
√
x2 + y2 − 1 + ln(4− x2 − y2)

SOLUTION. The expression for f makes sense if x2 + y2 − 1 ≥ 0 and 4− x2 − y2 > 0. Thus,
the domain of the function f is

D(f) = {(x, y) ∈ R2|1 ≤ x2 + y2 < 4}

14. Find the level curves of the function z = x− y2.

SOLUTION. An equation for the level curves is k = x− y2 or y2 = x− k. It defines the family
of parabolas.
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15. Find fxyz if f(x, y, z) = exyz.

SOLUTION. fx = exyz(xyz)′x = yzexyz

fxy = (yzexyz)′y = zexyz + yzexyz(xyz)′y = zexyz + xyz2exyz

fxyz = (zexyz + xyz2exyz)′z = exyz + zexyz(xyz)′z +2xyzexyz + xyz2exyz(xyz)′z = exyz + xyzexyz +
2xyzexyz + x2y2z2exyz = (1 + 3xyz + x2y2z2)exyz

16. The dimensions of a closed rectangular box are 80 cm, 60 cm, and 50 cm with a possible error
of 0.2 cm in each dimension. Use differential to estimate the maximum error in surface area of
the box.

SOLUTION. Let l, w, and h be the length, width, and height, respectively, of the box in
centimeters.

∆l = ∆w = ∆h = 0.2

The surface area of the box
A(l, w, h) = 2(lw + lh+ wh)

∆A =
∂A

∂l
∆l +

∂A

∂w
∆w +

∂A

∂h
∆h

∂A

∂l
= 2w + 2h;

∂A

∂l
(80, 60, 50) = 220

∂A

∂w
= 2l + 2h;

∂A

∂w
(80, 60, 50) = 260

∂A

∂h
= 2l + 2w;

∂A

∂h
(80, 60, 50) = 280

Thus,
∆A = (220 + 260 + 280)(0.2) = 152cm2

17. Find parametric equations of the normal line and an equation of the tangent plane to the
surface

x3 + y3 + z3 = 5xyz

at the point (2, 1, 1).
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SOLUTION. Let F (x, y, z) = x3 + y3 + z3 − 5xyz. Then

∇F (x, y, z) =< 3x2 − 5yz, 3y2 − 5xz, 3z2 − 5xy >

∇F (2, 1, 1) =< 7,−7,−7 >

The equation of the tangent plane at (2, 1, 1) is

7(x− 2)− 7(y − 1)− 7(z − 1) = 0

The parametric equations of the normal line at (2, 1, 1) are

x = 2 + 7t, y = 1− 7t, z = 1− 7t

18. Given that w(x, y) = 2 ln(3x + 5y) + x − 2 tan−1 y, where x = s − cot t, y = s + sin−1 t. Find
∂w

∂t
.

SOLUTION.

∂w

∂t
=

∂w

∂x

∂x

∂t
+

∂w

∂y

∂y

∂t
=

(
6

3x+ 5y
+ 1

)
csc2 t+

(
10

3x+ 5y
− 2

1 + y2

)
1√

1− t2

19. Let f(x, y, z) = ln(2x+3y+6z). Find a unit vector in the direction in which f decreases most
rapidly at the point P (−1,−1, 1) and find the derivative (rate of change) of f in this direction.

SOLUTION. The function f decreases most rapidly in the direction of the vector−∇f(−1,−1, 1).

∇f(x, y, z) =

⟨
2

2x+ 3y + 6z
,

3

2x+ 3y + 6z
,

6

2x+ 3y + 6z

⟩

∇f(−1,−1, 1) =

⟨
2

−2− 3 + 6
,

3

−2− 3 + 6
,

6

−2− 3 + 6

⟩
=< 2, 3, 4 >

|∇f(−1,−1, 1)| =
√
4 + 9 + 36 =

√
49 = 7

The unit vector in the direction of the vector ∇f(−1,−1, 1) is

u⃗ =
1

7
< 2, 3, 4 >=

⟨
2

7
,
3

7
,
6

7

⟩

So, the function f decreases most rapidly in the direction of the vector −u⃗ =

⟨
−2

7
,−3

7
,−6

7

⟩
D−u⃗f(x, y, z) = ∇f(x, y, z) · (−u⃗) =⟨

2

2x+ 3y + 6z
,

3

2x+ 3y + 6z
,

6

2x+ 3y + 6z

⟩
·
⟨
−2

7
,−3

7
,−6

7

⟩
= − 7

2x+ 3y + 6z

20. Find
∂z

∂x
and

∂z

∂y
if

xey + yz + zex = 0
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SOLUTION.

∂z

∂x
= −

∂F

∂x
∂F

∂z

,
∂z

∂y
= −

∂F

∂y
∂F

∂z

where F (x, y, z) = xey + yz + zex

∂F

∂x
= ey + zex

∂F

∂y
= xey + z

∂F

∂z
= y + ex

So
∂z

∂x
= −ey + zex

y + ex
and

∂z

∂y
= −xey + z

y + ex
.

21. Find the local extrema/saddle points for

f(x, y) = 2x2 + y2 + 2xy + 2x+ 2y

SOLUTION. We first locate the critical points:

fx(x, y) = 2x+ y + 1

fy(x, y) = y + x+ 1

Setting these derivatives equal to zero, we get the following system:{
2x+ y + 1 = 0
x+ y + 1 = 0

Substitute y = −1− x from the second equation into the first equation:

2x+ (−1− x) + 1 = 0

x = 0, y = −1− x = −1

The critical point is (0,−1).

Next we calculate the second partial derivatives:

fxx(x, y) = 4, fxy(x, y) = 2, fyy(x, y) = 2.

Then

D(x, y) =

∣∣∣∣ 4 2
2 2

∣∣∣∣ = 8− 4 = 4 > 0

Since D(x, y) = 4 > 0 and fxx(x, y) = 4 > 0, the function f has a local minimum at the point
(0,−1), f(0,−1) = −1.

22. Find the absolute maximum and minimum values of the function f(x, y) = x2+2xy+3y2 over
the set D, where D is the closed triangular region with vertices (−1, 1), (2, 1), and (−1,−2).

SOLUTION. The set D is bounded by lines x = −1, y = 1, and x− y = 1
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First we find critical points for f :

fx(x, y) = 2x+ 2y = 0

fy(x, y) = 2x+ 6y = 0

so the only critical point is (0, 0).

f(0, 0) = 0

Now we look at the values of f on the boundary of D.

f(−1, 1) = (−1)2 + 2(−1)(1) + 3(1)2 = 2

f(2, 1) = (2)2 + 2(2)(2) + 3(1)2 = 11

f(−1,−2) = (−1)2 + 2(−1)(−2) + 3(−2)2 = 17

If x = −1, then f(−1, y) = 1− 2y + 3y2

fy(−1, y) = −2 + 6y = 0, so y = 1/3.

f(−1, 1/3) = 1/3

If y = 1, then f(x, 1) = x2 + 2x+ 1, fx(x, 0) = 2x+ 2 = 0 and x = −1

f(−1, 1) = 2

If x−y = 1, then y = x−1, and g(x) = f(x, y) = x2+2xy+3y3 = x2+2x(x−1)+3(x−1)2 =
6x2 − 8x− 3

g′(x) = 12x− 8 = 0, so x = 8/12 = 2/3 and y = 2/3− 1 = −1/3

f(2/3,−1/3) = 1/3

Thus, the absolute maximum value of the function is f(−1,−2) = 17 and the absolute minimum
value is f(0, 0) = 0.
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