Math 251. WEEK in REVIEW 5. Fall 2013

1. Given $\vec{a}=<1,1,2>$ and $\vec{b}=<2,-1,0>$. Find the area of the parallelogram with adjacent sides \vec{a} and \vec{b}.
SOLUTION. $A=|\vec{a} \times \vec{b}|$

$$
\begin{gathered}
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 1 & 2 \\
2 & -1 & 0
\end{array}\right|=\vec{\imath}\left|\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
1 & 2 \\
2 & 0
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right|=2 \vec{\imath}+4 \vec{\jmath}-3 \vec{k} \\
|\vec{a} \times \vec{b}|=\sqrt{(2)^{2}+(4)^{2}+(-3)^{2}}=\sqrt{29}
\end{gathered}
$$

Thus, $A=\sqrt{29}$.
2. Find an equation of the line through the point $(1,2,-1)$ and perpendicular to the plane

$$
2 x+y+z=2
$$

SOLUTION. The line is parallel to the normal vector of the plane $\vec{n}=<2,1,1>$. Thus, symmetric equations of the line are:

$$
\frac{x-1}{2}=\frac{y-2}{1}=\frac{z+1}{1}
$$

3. Find the distance from the point $(1,-1,2)$ to the plane

$$
x+3 y+z=7
$$

SOLUTION. $D=\frac{|1+3(-1)+2-7|}{\sqrt{(1)^{2}+(3)^{2}+(1)^{2}}}=\frac{7}{\sqrt{11}}$.
4. Find an equation of the plane that passes through the point $(-1,-3,1)$ and contains the line $x=-1-2 t, y=4 t, z=2+t$.
SOLUTION. The vector $\vec{v}=<-2,4,1>$ lies in the plane. Let $P(-1,-3,1)$ and $Q(-1,0,2)$. The second vector that lies in the plane is the vector $\overrightarrow{P Q}=<0,3,1>$. Then the normal vector to the plane

$$
\vec{n}=\vec{v} \times \overrightarrow{P Q}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-2 & 4 & 1 \\
0 & 3 & 1
\end{array}\right|=\vec{\imath}\left|\begin{array}{cc}
4 & 1 \\
3 & 1
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
-2 & 1 \\
0 & 1
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
-2 & 4 \\
0 & 3
\end{array}\right|=\vec{\imath}+2 \vec{\jmath}-6 \vec{k}
$$

Thus, an equation of the plane is

$$
1(x+1)+2(y+3)-6(z-1)=0
$$

5. Find parametric equations of the line of intersection of the planes $z=x+y$ and $2 x-5 y-z=1$.

SOLUTION. The direction vector for the line of intersection is $\vec{v}=\overrightarrow{n_{1}} \times \overrightarrow{n_{1}}$, where $\overrightarrow{n_{1}}=<$ $1,1,-1>$ is the normal vector for the first plane and $\overrightarrow{n_{2}}=<2,-5,-1>$ is the normal vector for the second plane.

$$
\begin{gathered}
\vec{v}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 1 & -1 \\
2 & -5 & -1
\end{array}\right|=\vec{\imath}\left|\begin{array}{cc}
1 & -1 \\
-5 & -1
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
1 & -1 \\
2 & -1
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
1 & 1 \\
2 & -5
\end{array}\right|= \\
\vec{\imath}(-1-5)-\vec{\jmath}(-1+2)+\vec{k}(-5-2)=-6 \vec{\imath}-\vec{\jmath}-7 \vec{k}
\end{gathered}
$$

. To find a point on the line of intersection, set one of the variables equal to a constant, say $y=0$. Then the equations of the planes reduce to $x-z=0$ and $2 x-z=1$. Solving this two equations gives $x=z=1$. So a point on a line of intersection is $(1,0,1)$. The parametric equations for the line are

$$
\begin{aligned}
& x=1-6 t \\
& y=-t \\
& z=1-7 t
\end{aligned}
$$

6. Are the lines $x=-1+4 t, y=3+t, z=1$ and $x=13-8 s, y=1-2 s, z=2$ parallel, skew or intersecting? If they intersect, find the point of intersection.
SOLUTION. The direction vector for the first line is $\overrightarrow{v_{1}}=<4,1,0>$, the second line is parallel to the vector $\overrightarrow{v_{2}}=<-8,-2,0>$. Since $\overrightarrow{v_{2}}=-2 \overrightarrow{v_{1}}$, vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are parallel. Thus, the lines are parallel.
7. Identify and roughly sketch the following surfaces. Find traces in the planes $x=k, y=k$, $z=k$
(a) $4 x^{2}+9 y^{2}+36 z^{2}=36$

$$
\text { SOLUTION. } \frac{x^{2}}{9}+\frac{y^{2}}{4}+z^{2}=1-\text { ellipsoid }
$$

Traces
in $x=k: \frac{y^{2}}{4\left(1-\frac{k^{2}}{9}\right)}+\frac{z^{2}}{1-\frac{k^{2}}{9}}=1$ - ellipse
in $y=k: \frac{x^{2}}{9\left(1-\frac{k^{2}}{4}\right)}+\frac{z^{2}}{1-\frac{k^{2}}{4}}=1$ - ellipse
in $z=k: \frac{x^{2}}{9\left(1-k^{2}\right)}+\frac{y^{2}}{4\left(1-k^{2}\right)}=1-$ ellipse
(b) $y=x^{2}+z^{2}$

An equation $y=x^{2}+z^{2}$ defines the elliptic paraboloid with axis the y-axis. SOLUTION.

8. Find

$$
\lim _{t \rightarrow 1}\left(\sqrt{t+3} \vec{\imath}+\frac{t-1}{t^{2}-1} \vec{\jmath}+\frac{\tan t}{t} \vec{k}\right)
$$

SOLUTION.

$$
\begin{gathered}
\lim _{t \rightarrow 1}\left(\sqrt{t+3} \vec{\imath}+\frac{t-1}{t^{2}-1} \vec{\jmath}+\frac{\tan t}{t} \vec{k}\right)=\lim _{t \rightarrow 1} \sqrt{t+3} \vec{\imath}+\lim _{t \rightarrow 1} \frac{t-1}{t^{2}-1} \vec{\jmath}+\lim _{t \rightarrow 1} \frac{\tan t}{t} \vec{k}= \\
\sqrt{4} \vec{\imath}+\lim _{t \rightarrow 1} \frac{t-1}{(t-1)(t+1)} \vec{\jmath}+\tan (1) \vec{k}=2 \vec{\imath}+\frac{1}{2} \vec{\jmath}+\tan (1) \vec{k}
\end{gathered}
$$

9. Find the unit tangent vector $\vec{T}(t)$ for the vector function $\vec{r}(t)=<t, 2 \sin t, 3 \cos t>$.

SOLUTION. The tangent vector $\overrightarrow{r^{\prime}}(t)=<1,2 \cos t,-3 \sin t>$,

$$
\left|\overrightarrow{r^{\prime}}(t)\right|=\sqrt{1+4 \cos ^{2} t+9 \sin ^{2} t}=\sqrt{1+4 \cos ^{2} t+4 \sin ^{2} t+5 \sin ^{2} t}=\sqrt{5+5 \sin ^{2} t}
$$

. The unit tangent vector

$$
\vec{T}(t)=\frac{1}{\left|\overrightarrow{r^{\prime}}(t)\right|} \overrightarrow{r^{\prime}}(t)=\frac{1}{\sqrt{5+5 \sin ^{2} t}}<t, 2 \cos t,-3 \sin t>
$$

10. Evaluate

$$
\int_{1}^{4}\left(\sqrt{t} \vec{\imath}+t e^{-t} \vec{\jmath}+\frac{1}{t^{2}} \vec{k}\right) d t
$$

SOLUTION.

$$
\begin{gathered}
\int_{1}^{4}\left(\sqrt{t} \vec{\imath}+t e^{-t} \vec{\jmath}+\frac{1}{t^{2}} \vec{k}\right) d t=\left(\int_{1}^{4} \sqrt{t} d t\right) \vec{\imath}+\left(\int_{1}^{4} t e^{-t} d t\right) \vec{\jmath}+\left(\int_{1}^{4} \frac{1}{t^{2}} d t\right) \vec{k} \\
\int_{1}^{4} \sqrt{t} d t=\left.\frac{t^{3 / 2}}{3 / 2}\right|_{1} ^{4}=\frac{2}{3}\left[4^{3 / 2}-1\right]=\frac{2}{3}(8-1)=\frac{14}{3} \\
\int_{1}^{4} t e^{-t} d t=\left|\begin{array}{ll}
u=t & u^{\prime}=1 \\
v^{\prime}=e^{-t} & v=-e^{-t}
\end{array}\right|=-\left.t e^{-t}\right|_{1} ^{4}+\int_{1}^{4} e^{-t} d t=-4 e^{-4}+e^{-1}-\left.e^{-t}\right|_{1} ^{4}= \\
-4 e^{-4}+e^{-1}-e^{-4}+e^{-1}=-5 e^{-4}+2 e^{-1} \\
\int_{1}^{4} \frac{1}{t^{2}} d t=\left.\frac{1}{t}\right|_{1} ^{4}=-\frac{1}{4}+1=\frac{3}{4}
\end{gathered}
$$

Thus,

$$
\int_{1}^{4}\left(\sqrt{t} \vec{\imath}+t e^{-t} \vec{\jmath}+\frac{1}{t^{2}} \vec{k}\right) d t=\frac{14}{3} \vec{\imath}+\left(-5 e^{-4}+2 e^{-1}\right) \vec{\jmath}+\frac{3}{4} \vec{k}
$$

11. Find the length of the curve given by the vector function $\vec{r}(t)=\cos ^{3} t \vec{\imath}+\sin ^{3} t \vec{\jmath}+\cos (2 t) \vec{k}$, $0 \leq t \leq \frac{\pi}{2}$.
SOLUTION. $\overrightarrow{r^{\prime}}(t)=-3 \cos ^{2} t \sin t \vec{\imath}+3 \sin ^{2} t \cos t \vec{\jmath}-2 \sin (2 t) \vec{k}$
$\left|\overrightarrow{r^{\prime}}(t)\right|=\sqrt{9 \cos ^{4} t \sin ^{2} t+9 \sin ^{4} t \cos ^{2} t+4 \sin ^{2}(2 t)}$
Recall that $\sin (2 t)=2 \sin t \cos t$, then $\sin ^{2}(2 t)=4 \sin ^{2} t \cos ^{2} t$ and
$\left|\overrightarrow{r^{\prime}}(t)\right|=\sqrt{\sin ^{2} t \cos ^{2} t\left(9 \sin ^{2} t+9 \cos ^{2} t+16\right)}=\sin t \cos t \sqrt{25}=5 \sin t \cos t=\frac{5}{2} \sin (2 t)$
Then the length of the curve
$L=\int_{0}^{\pi / 2} \frac{5}{2} \sin (2 t) d t=-\left.\frac{5}{4} \cos (2 t)\right|_{0} ^{\pi / 2}=\frac{5}{2}$
12. Find the curvature of the curve $\vec{r}(t)=<2 t^{3},-3 t^{2}, 6 t>$.

SOLUTION.

$$
\begin{aligned}
& \kappa(t)=\frac{\left|\overrightarrow{r^{\prime}}(t) \times \overrightarrow{r^{\prime \prime}}(t)\right|}{\left|\overrightarrow{r^{\prime}}(t)\right|^{3}} \\
& \overrightarrow{r^{\prime}}(t)=<6 t^{2},-6 t, 6>=6<t^{2},-t, 1>,\left|\overrightarrow{r^{\prime}}(t)\right|=6 \sqrt{1+t^{2}+t^{4}} \\
& \overrightarrow{r^{\prime \prime}}(t)=<12 t,-6,0> \\
& \quad \overrightarrow{r^{\prime}}(t) \times \overrightarrow{r^{\prime \prime}}(t)=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
6 t^{2} & -6 t & 6 \\
12 t & -6 & 0
\end{array}\right|=\vec{\imath}\left|\begin{array}{cc}
-6 t & 6 \\
-6 & 0
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
6 t^{2} & 6 \\
12 t & 0
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
6 t^{2} & -6 t \\
12 t & -6
\end{array}\right|= \\
& \quad \vec{\imath}(36)-\vec{\jmath}(-72 t)+\vec{k}\left(-36 t^{2}+72 t^{2}\right)=<36,72 t, 36 t^{2}>=36<1,2 t, t^{2}>
\end{aligned}
$$

Thus,

$$
\kappa(t)=\frac{36 \sqrt{1+4 t^{2}+t^{4}}}{\left(6 \sqrt{1+t^{2}+t^{4}}\right)^{3}}=\frac{\sqrt{1+4 t^{2}+t^{4}}}{6\left(1+t^{2}+t^{4}\right)^{3 / 2}}
$$

13. Sketch the domain of the function

$$
f(x, y)=\sqrt{x^{2}+y^{2}-1}+\ln \left(4-x^{2}-y^{2}\right)
$$

SOLUTION. The expression for f makes sense if $x^{2}+y^{2}-1 \geq 0$ and $4-x^{2}-y^{2}>0$. Thus, the domain of the function f is

$$
D(f)=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x^{2}+y^{2}<4\right\}
$$

14. Find the level curves of the function $z=x-y^{2}$.

SOLUTION. An equation for the level curves is $k=x-y^{2}$ or $y^{2}=x-k$. It defines the family of parabolas.

15. Find $f_{x y z}$ if $f(x, y, z)=e^{x y z}$.

SOLUTION. $f_{x}=e^{x y z}(x y z)_{x}^{\prime}=y z e^{x y z}$
$f_{x y}=\left(y z e^{x y z}\right)_{y}^{\prime}=z e^{x y z}+y z e^{x y z}(x y z)_{y}^{\prime}=z e^{x y z}+x y z^{2} e^{x y z}$
$f_{x y z}=\left(z e^{x y z}+x y z^{2} e^{x y z}\right)_{z}^{\prime}=e^{x y z}+z e^{x y z}(x y z)_{z}^{\prime}+2 x y z e^{x y z}+x y z^{2} e^{x y z}(x y z)_{z}^{\prime}=e^{x y z}+x y z e^{x y z}+$ $2 x y z e^{x y z}+x^{2} y^{2} z^{2} e^{x y z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}$
16. The dimensions of a closed rectangular box are $80 \mathrm{~cm}, 60 \mathrm{~cm}$, and 50 cm with a possible error of 0.2 cm in each dimension. Use differential to estimate the maximum error in surface area of the box.

SOLUTION. Let l, w, and h be the length, width, and height, respectively, of the box in centimeters.

$$
\Delta l=\Delta w=\Delta h=0.2
$$

The surface area of the box

$$
\begin{gathered}
A(l, w, h)=2(l w+l h+w h) \\
\Delta A=\frac{\partial A}{\partial l} \Delta l+\frac{\partial A}{\partial w} \Delta w+\frac{\partial A}{\partial h} \Delta h \\
\frac{\partial A}{\partial l}=2 w+2 h ; \quad \frac{\partial A}{\partial l}(80,60,50)=220 \\
\frac{\partial A}{\partial w}=2 l+2 h ; \quad \frac{\partial A}{\partial w}(80,60,50)=260 \\
\frac{\partial A}{\partial h}=2 l+2 w ; \quad \frac{\partial A}{\partial h}(80,60,50)=280
\end{gathered}
$$

Thus,

$$
\Delta A=(220+260+280)(0.2)=152 \mathrm{~cm}^{2}
$$

17. Find parametric equations of the normal line and an equation of the tangent plane to the surface

$$
x^{3}+y^{3}+z^{3}=5 x y z
$$

at the point $(2,1,1)$.

SOLUTION. Let $F(x, y, z)=x^{3}+y^{3}+z^{3}-5 x y z$. Then

$$
\begin{gathered}
\nabla F(x, y, z)=<3 x^{2}-5 y z, 3 y^{2}-5 x z, 3 z^{2}-5 x y> \\
\nabla F(2,1,1)=<7,-7,-7>
\end{gathered}
$$

The equation of the tangent plane at $(2,1,1)$ is

$$
7(x-2)-7(y-1)-7(z-1)=0
$$

The parametric equations of the normal line at $(2,1,1)$ are

$$
x=2+7 t, \quad y=1-7 t, \quad z=1-7 t
$$

18. Given that $w(x, y)=2 \ln (3 x+5 y)+x-2 \tan ^{-1} y$, where $x=s-\cot t, y=s+\sin ^{-1} t$. Find $\frac{\partial w}{\partial t}$.

SOLUTION.

$$
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}=\left(\frac{6}{3 x+5 y}+1\right) \csc ^{2} t+\left(\frac{10}{3 x+5 y}-\frac{2}{1+y^{2}}\right) \frac{1}{\sqrt{1-t^{2}}}
$$

19. Let $f(x, y, z)=\ln (2 x+3 y+6 z)$. Find a unit vector in the direction in which f decreases most rapidly at the point $P(-1,-1,1)$ and find the derivative (rate of change) of f in this direction. SOLUTION. The function f decreases most rapidly in the direction of the vector $-\nabla f(-1,-1,1)$.

$$
\begin{gathered}
\nabla f(x, y, z)=\left\langle\frac{2}{2 x+3 y+6 z}, \frac{3}{2 x+3 y+6 z}, \frac{6}{2 x+3 y+6 z}\right\rangle \\
\nabla f(-1,-1,1)=\left\langle\frac{2}{-2-3+6}, \frac{3}{-2-3+6}, \frac{6}{-2-3+6}\right\rangle=<2,3,4> \\
|\nabla f(-1,-1,1)|=\sqrt{4+9+36}=\sqrt{49}=7
\end{gathered}
$$

The unit vector in the direction of the vector $\nabla f(-1,-1,1)$ is

$$
\left.\vec{u}=\frac{1}{7}<2,3,4\right\rangle=\left\langle\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right\rangle
$$

So, the function f decreases most rapidly in the direction of the vector $-\vec{u}=\left\langle-\frac{2}{7},-\frac{3}{7},-\frac{6}{7}\right\rangle$

$$
\begin{gathered}
D_{-\vec{u}} f(x, y, z)=\nabla f(x, y, z) \cdot(-\vec{u})= \\
\left\langle\frac{2}{2 x+3 y+6 z}, \frac{3}{2 x+3 y+6 z}, \frac{6}{2 x+3 y+6 z}\right\rangle \cdot\left\langle-\frac{2}{7},-\frac{3}{7},-\frac{6}{7}\right\rangle=-\frac{7}{2 x+3 y+6 z}
\end{gathered}
$$

20. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
x e^{y}+y z+z e^{x}=0
$$

SOLUTION.

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}, \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}
$$

where $F(x, y, z)=x e^{y}+y z+z e^{x}$

$$
\begin{gathered}
\frac{\partial F}{\partial x}=e^{y}+z e^{x} \\
\frac{\partial F}{\partial y}=x e^{y}+z \\
\frac{\partial F}{\partial z}=y+e^{x}
\end{gathered}
$$

So $\frac{\partial z}{\partial x}=-\frac{e^{y}+z e^{x}}{y+e^{x}}$ and $\frac{\partial z}{\partial y}=-\frac{x e^{y}+z}{y+e^{x}}$.
21. Find the local extrema/saddle points for

$$
f(x, y)=2 x^{2}+y^{2}+2 x y+2 x+2 y
$$

SOLUTION. We first locate the critical points:

$$
\begin{aligned}
& f_{x}(x, y)=2 x+y+1 \\
& f_{y}(x, y)=y+x+1
\end{aligned}
$$

Setting these derivatives equal to zero, we get the following system:

$$
\left\{\begin{array}{l}
2 x+y+1=0 \\
x+y+1=0
\end{array}\right.
$$

Substitute $y=-1-x$ from the second equation into the first equation:
$2 x+(-1-x)+1=0$
$x=0, y=-1-x=-1$
The critical point is $(0,-1)$.
Next we calculate the second partial derivatives:

$$
f_{x x}(x, y)=4, f_{x y}(x, y)=2, f_{y y}(x, y)=2 .
$$

Then

$$
D(x, y)=\left|\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right|=8-4=4>0
$$

Since $D(x, y)=4>0$ and $f_{x x}(x, y)=4>0$, the function f has a local minimum at the point $(0,-1), f(0,-1)=-1$.
22. Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+2 x y+3 y^{2}$ over the set D, where D is the closed triangular region with vertices $(-1,1),(2,1)$, and $(-1,-2)$. SOLUTION. The set D is bounded by lines $x=-1, y=1$, and $x-y=1$

First we find critical points for f :
$f_{x}(x, y)=2 x+2 y=0$
$f_{y}(x, y)=2 x+6 y=0$
so the only critical point is $(0,0)$.
$f(0,0)=0$
Now we look at the values of f on the boundary of D.
$f(-1,1)=(-1)^{2}+2(-1)(1)+3(1)^{2}=2$
$f(2,1)=(2)^{2}+2(2)(2)+3(1)^{2}=11$
$f(-1,-2)=(-1)^{2}+2(-1)(-2)+3(-2)^{2}=17$
If $x=-1$, then $f(-1, y)=1-2 y+3 y^{2}$
$f_{y}(-1, y)=-2+6 y=0$, so $y=1 / 3$.
$f(-1,1 / 3)=1 / 3$
If $y=1$, then $f(x, 1)=x^{2}+2 x+1, f_{x}(x, 0)=2 x+2=0$ and $x=-1$
$f(-1,1)=2$
If $x-y=1$, then $y=x-1$, and $g(x)=f(x, y)=x^{2}+2 x y+3 y^{3}=x^{2}+2 x(x-1)+3(x-1)^{2}=$ $6 x^{2}-8 x-3$
$g^{\prime}(x)=12 x-8=0$, so $x=8 / 12=2 / 3$ and $y=2 / 3-1=-1 / 3$
$f(2 / 3,-1 / 3)=1 / 3$
Thus, the absolute maximum value of the function is $f(-1,-2)=17$ and the absolute minimum value is $f(0,0)=0$.

