Math 251. WEEK in REVIEW 8. Fall 2013

1. Find the gradient vector field of $f(x, y, z)=x \ln \left(y^{4}+z^{2}\right)$
2. Let C be the line segment starting at $(0,1,1)$ and ending at $(3,1,4)$. Find the mass of a thin wire in the shape of C with the density $\rho(x, y)=x+y$.
3. Find the mass of a thin wire in the shape of C with the density $\rho(x, y, z)=7 y^{2} z$ if C is given by $\vec{r}(t)=\left\langle\frac{2}{3} t^{3}, t, t^{2}\right\rangle, 0 \leq t \leq 1$.
4. Find the line integral of the vector field $\vec{F}(x, y, z)=\left\langle-y z^{2}, x z^{2}, z^{3}\right\rangle$ around the circle $\vec{r}(t)=<2 \cos t, 2 \sin t, 8>$.
5. Find the work done by the force field $\vec{F}(x, y, z)=<z, x, y>$ in moving a particle from the point $(3,0,0)$ to the point $(0, \pi / 2,3)$
(a) along the straight line
(b) along the helix $x=3 \cos t, y=t, z=3 \sin t$
6. Find a scalar function $f(x, y, z)$ such that $\nabla f=<2 x y+z, x^{2}-2 y, x>$ and $f(1,2,0)=3$.
7. Let $\vec{F}(x, y)=\left\langle x^{3} y^{4}, x^{4} y^{3}\right\rangle$. Compute $\int_{C} \vec{F} \cdot d \vec{r}$ where
(a) C is any simple closed path.
(b) C is any path from the point $M(0,0)$ to the point $N(1,2)$.
8. Let $\vec{F}(x, y)=<x+y^{2}, 2 x y+y^{2}>$.
a) Show that \vec{F} is conservative vector field.
b) Compute $\int_{C} \vec{F} \cdot d \vec{r}$ where C is any path from $(-1,0)$ to $(2,2)$.
9. Let $\vec{F}(x, y)=<2 x+y^{2}+3 x^{2} y, 2 x y+x^{3}+3 y^{2}>$.
(a) Show that \vec{F} is conservative vector field.
(b) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the arc of the curve $y=x \sin x$ from $(0,0)$ to $(\pi, 0)$.
10. Compute the integral $I=\oint_{C}\left(\cos x^{4}+x y\right) d x+\left(y^{2} e^{y}+x^{2}\right) d y$, where C is the triangular curve consisting of the line segments from $(0,0)$ to $(1,0)$, from $(1,0)$ to $(1,3)$, and from $(1,3)$ to $(0,0)$.
11. Compute the integral along the given positively oriented curve C :

$$
\int_{C}\left(y^{2}-\arctan x\right) d x+(3 x+\sin y) d y
$$

where C is the boundary of the region enclosed by the parabola $y=x^{2}$ and the line $y=4$.
12. Compute the integral

$$
\int_{C}\left(12-x^{2} y-y^{3}+\tan x\right) d x+\left(x y^{2}+x^{3}-e^{y}\right) d y
$$

where C is positively oriented boundary of the region enclosed by the circle $x^{2}+y^{2}=4$. Sketch the curve C indicating the positive direction.
13. Given the line integral $I=\int_{C} 4 x^{2} y d x-(2+x) d y$ where C consists of the line segment from $(0,0)$ to $(2,-2)$, the line segment from $(2,-2)$ to $(2,4)$, and the part of the parabola $y=x^{2}$ from $(2,4)$ to $(0,0)$. Use Green's theorem to evaluate the given integral and sketch the curve C indicating the positive direction.

