Math 251. WEEK in REVIEW 10. Fall 2013

1. Evaluate the surface integral $\iint_{S}\left(x^{2} z+y^{2} z\right) d S$ where
(a) S is the part of the plane $z=4+x+y$ that lies inside the cylinder $x^{2}+y^{2}=4$.
(b) S is the portion of the sphere $x^{2}+y^{2}+z^{2}=25$ such that $z \leq 0, y \geq 0$.
2. Evaluate the surface integral $\iint_{S}(x+y+z) d S$ where S is the surface of the cube defined by the inequalities $0 \leq x, y, z \leq 1$.
3. Find the mass of the lamina that is the portion of the surface $z=10-x^{2} / 2$ between the planes $x=0, x=1, y=0, y=1$, if the density is $\rho(x, y, z)=x$.
4. Find flux of the vector field $\vec{F}=<x, y, 1>$ across the surface S which is the boundary of the region enclosed by the cylinder $y^{2}+z^{2}=1$ and the planes $x=0$ and $x+y=5$. Use positive (outward) orientation for S.
5. Evaluate the surface integral $\iint_{S}<x, y, 1>\cdot d \vec{S}$ where S is the portion of the paraboloid $z=1-x^{2}-y^{2}$ in the first octant, oriented by downward normals.
6. Use Stokes' Theorem to evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=<3 z, 5 x,-2 y>$ and C is the ellipse in which the plane $z=y+3$ intersects the cylinder $x^{2}+y^{2}=4$, with positive orientation as viewed from above.
7. Find the work performed by the forced field $\vec{F}=\left\langle-3 y^{2}, 4 z, 6 x\right\rangle$ on a particle that traverses the triangle C in the plane $z=\frac{1}{2} y$ with vertices $A(2,0,0), B(0,2,1)$, and $O(0,0,0)$ with a counterclockwise orientation looking down the positive z-axis.
