Math 251. WEEK in REVIEW 11. Fall 2013

1. Use Stokes' Theorem to evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y, z)=<3 z, 5 x,-2 y>$ and C is the ellipse in which the plane $z=y+3$ intersects the cylinder $x^{2}+y^{2}=4$, with positive orientation as viewed from above.
2. Find the work performed by the forced field $\vec{F}=\left\langle-3 y^{2}, 4 z, 6 x\right\rangle$ on a particle that traverses the triangle C in the plane $z=\frac{1}{2} y$ with vertices $A(2,0,0), B(0,2,1)$, and $O(0,0,0)$ with a counterclockwise orientation looking down the positive z-axis.
3. Evaluate $I=\oint_{C} \vec{F} \cdot d \vec{r}$ if $\vec{F}=\left\langle 2 y+3 e^{x}, z-y^{8}, x+\ln \left(z^{2}+1\right)\right\rangle$ and C is the curve of intersection of the plane $x+y+z=0$ and sphere $x^{2}+y^{2}+z^{2}=1$. (Orient C to be counterclockwise when viewed from above).
4. Verify Stokes' Theorem for the surface $S: x^{2}+y^{2}+5 z=1, z \geq-5$ (oriented by upward normal) and the vector field $\vec{F}=x z \vec{\imath}+y z \vec{\jmath}+\left(x^{2}+y^{2}\right) \vec{k}$.
5. Use the Divergence Theorem to compute $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=x^{3} \vec{\imath}+y^{3} \vec{\jmath}+z^{3} \vec{k}$ and S is the surface of the region enclosed by $x^{2}+y^{2}=1$ and the planes $z=0, z=2$.
6. Use the Divergence Theorem to find flux of the vector field $\vec{F}=\langle x, y, 1\rangle$ across the surface S which is the boundary of the region enclosed by the cylinder $y^{2}+z^{2}=1$ and the planes $x=0$ and $x+y=5$.
7. Verify the Divergence Theorem for the region

$$
E=\left\{(x, y, z): 0 \leq z \leq 9-x^{2}-y^{2}\right\}
$$

and the vector field $\vec{F}=\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$
8. Apply the Divergence Theorem to compute $\iint_{S} \vec{F} \cdot d \vec{S}$ for the vector field

$$
\vec{F}(x, y, z)=\left\langle x^{3}+\sin (y z), y^{3}, y+z^{3}\right\rangle
$$

over the complete boundary S of the solid hemisphere $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}$ with outward normal.

